diff --git a/maths/monte_carlo.py b/maths/monte_carlo.py index d174a0b18..29c25a679 100644 --- a/maths/monte_carlo.py +++ b/maths/monte_carlo.py @@ -18,6 +18,10 @@ def pi_estimator(iterations: int): 4. After all the dots are placed, divide the dots in the circle by the total. 5. Multiply this value by 4 to get your estimate of pi. 6. Print the estimated and numpy value of pi + >>> pi_estimator(1000) + The estimated value of pi is 3.145 + The numpy value of pi is 3.141592653589793 + The total error is 0.003 """ # A local function to see if a dot lands in the circle. @@ -61,8 +65,11 @@ def area_under_curve_estimator( c. Expected value = average of the function evaluations 4. Estimated value of integral = Expected value * (max_value - min_value) 5. Returns estimated value + >>> def test_function(x): + >>> return x * x + >>> area_under_curve_estimator(1000, test_function) + 0.334 (estimated value should be close to 1/3) """ - return mean( function_to_integrate(uniform(min_value, max_value)) for _ in range(iterations) ) * (max_value - min_value) @@ -77,12 +84,19 @@ def area_under_line_estimator_check( 1. Calls "area_under_curve_estimator" function 2. Compares with the expected value 3. Prints estimated, expected and error value + >>> area_under_line_estimator_check(1000) + ****************** + Estimating area under y=x where x varies from 0.0 to 1.0 + Estimated value is 0.332 + Expected value is 0.5 + Total error is 0.168 + ****************** """ def identity_function(x: float) -> float: """ Represents identity function - >>> [function_to_integrate(x) for x in [-2.0, -1.0, 0.0, 1.0, 2.0]] + >>> [identity_function(x) for x in [-2.0, -1.0, 0.0, 1.0, 2.0]] [-2.0, -1.0, 0.0, 1.0, 2.0] """ return x @@ -103,6 +117,13 @@ def area_under_line_estimator_check( def pi_estimator_using_area_under_curve(iterations: int) -> None: """ Area under curve y = sqrt(4 - x^2) where x lies in 0 to 2 is equal to pi + >>> pi_estimator_using_area_under_curve(1000) + ****************** + Estimating pi using area_under_curve_estimator + Estimated value is 3.141 + Expected value is 3.141592653589793 + Total error is 0.0004 + ****************** """ def function_to_integrate(x: float) -> float: