mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Add circular convolution (#8158)
* add circular convolution * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add type hint for __init__ * rounding off final values to 2 and minor changes * add test case for unequal signals * changes in list comprehension and enumeraton --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
41b633a841
commit
9e28ecca28
99
electronics/circular_convolution.py
Normal file
99
electronics/circular_convolution.py
Normal file
|
@ -0,0 +1,99 @@
|
|||
# https://en.wikipedia.org/wiki/Circular_convolution
|
||||
|
||||
"""
|
||||
Circular convolution, also known as cyclic convolution,
|
||||
is a special case of periodic convolution, which is the convolution of two
|
||||
periodic functions that have the same period. Periodic convolution arises,
|
||||
for example, in the context of the discrete-time Fourier transform (DTFT).
|
||||
In particular, the DTFT of the product of two discrete sequences is the periodic
|
||||
convolution of the DTFTs of the individual sequences. And each DTFT is a periodic
|
||||
summation of a continuous Fourier transform function.
|
||||
|
||||
Source: https://en.wikipedia.org/wiki/Circular_convolution
|
||||
"""
|
||||
|
||||
import doctest
|
||||
from collections import deque
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class CircularConvolution:
|
||||
"""
|
||||
This class stores the first and second signal and performs the circular convolution
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
First signal and second signal are stored as 1-D array
|
||||
"""
|
||||
|
||||
self.first_signal = [2, 1, 2, -1]
|
||||
self.second_signal = [1, 2, 3, 4]
|
||||
|
||||
def circular_convolution(self) -> list[float]:
|
||||
"""
|
||||
This function performs the circular convolution of the first and second signal
|
||||
using matrix method
|
||||
|
||||
Usage:
|
||||
>>> import circular_convolution as cc
|
||||
>>> convolution = cc.CircularConvolution()
|
||||
>>> convolution.circular_convolution()
|
||||
[10, 10, 6, 14]
|
||||
|
||||
>>> convolution.first_signal = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6]
|
||||
>>> convolution.second_signal = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5]
|
||||
>>> convolution.circular_convolution()
|
||||
[5.2, 6.0, 6.48, 6.64, 6.48, 6.0, 5.2, 4.08]
|
||||
|
||||
>>> convolution.first_signal = [-1, 1, 2, -2]
|
||||
>>> convolution.second_signal = [0.5, 1, -1, 2, 0.75]
|
||||
>>> convolution.circular_convolution()
|
||||
[6.25, -3.0, 1.5, -2.0, -2.75]
|
||||
|
||||
>>> convolution.first_signal = [1, -1, 2, 3, -1]
|
||||
>>> convolution.second_signal = [1, 2, 3]
|
||||
>>> convolution.circular_convolution()
|
||||
[8, -2, 3, 4, 11]
|
||||
|
||||
"""
|
||||
|
||||
length_first_signal = len(self.first_signal)
|
||||
length_second_signal = len(self.second_signal)
|
||||
|
||||
max_length = max(length_first_signal, length_second_signal)
|
||||
|
||||
# create a zero matrix of max_length x max_length
|
||||
matrix = [[0] * max_length for i in range(max_length)]
|
||||
|
||||
# fills the smaller signal with zeros to make both signals of same length
|
||||
if length_first_signal < length_second_signal:
|
||||
self.first_signal += [0] * (max_length - length_first_signal)
|
||||
elif length_first_signal > length_second_signal:
|
||||
self.second_signal += [0] * (max_length - length_second_signal)
|
||||
|
||||
"""
|
||||
Fills the matrix in the following way assuming 'x' is the signal of length 4
|
||||
[
|
||||
[x[0], x[3], x[2], x[1]],
|
||||
[x[1], x[0], x[3], x[2]],
|
||||
[x[2], x[1], x[0], x[3]],
|
||||
[x[3], x[2], x[1], x[0]]
|
||||
]
|
||||
"""
|
||||
for i in range(max_length):
|
||||
rotated_signal = deque(self.second_signal)
|
||||
rotated_signal.rotate(i)
|
||||
for j, item in enumerate(rotated_signal):
|
||||
matrix[i][j] += item
|
||||
|
||||
# multiply the matrix with the first signal
|
||||
final_signal = np.matmul(np.transpose(matrix), np.transpose(self.first_signal))
|
||||
|
||||
# rounding-off to two decimal places
|
||||
return [round(i, 2) for i in final_signal]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user