mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-13 18:19:47 +00:00
Fixed comments
This commit is contained in:
parent
c375df23fd
commit
9fa8164458
@ -1,8 +1,10 @@
|
|||||||
"""
|
"""
|
||||||
Implementation from scratch of a Multinomial Naive Bayes Classifier.
|
Implementation from scratch of a Multinomial Naive Bayes Classifier.
|
||||||
The algorithm is trained and tested on the twenty_newsgroup dataset from sklearn to perform text classification
|
The algorithm is trained and tested on the twenty_newsgroup dataset
|
||||||
|
from sklearn to perform text classification
|
||||||
|
|
||||||
Here the Wikipedia page to understand the theory behind this kind of probabilistic models:
|
Here the Wikipedia page to understand the theory behind this kind
|
||||||
|
of probabilistic models:
|
||||||
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
|
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -28,7 +30,8 @@ def group_indices_by_target(targets: ArrayLike) -> dict:
|
|||||||
Returns
|
Returns
|
||||||
----------
|
----------
|
||||||
grouped_indices : dict of (label : list)
|
grouped_indices : dict of (label : list)
|
||||||
Maps each target label to the list of indices of the examples with that label
|
Maps each target label to the list of indices of the
|
||||||
|
examples with that label
|
||||||
|
|
||||||
Example
|
Example
|
||||||
----------
|
----------
|
||||||
@ -90,8 +93,8 @@ class MultinomialNBClassifier:
|
|||||||
|
|
||||||
Example
|
Example
|
||||||
----------
|
----------
|
||||||
Let's test the function following an example taken from the documentation of the MultinomialNB model
|
Let's test the function following an example taken from the documentation
|
||||||
from sklearn
|
of the MultinomialNB model from sklearn
|
||||||
>>> rng = np.random.RandomState(1)
|
>>> rng = np.random.RandomState(1)
|
||||||
>>> data = rng.randint(5, size=(6, 100))
|
>>> data = rng.randint(5, size=(6, 100))
|
||||||
>>> data = sparse.csr_matrix(data)
|
>>> data = sparse.csr_matrix(data)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user