mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Reduce the complexity of graphs/minimum_spanning_tree_prims.py (#7952)
* Lower the --max-complexity threshold in the file .flake8 * Add test * Reduce the complexity of graphs/minimum_spanning_tree_prims.py * Remove backslashes * Remove # noqa: E741 * Fix the flake8 E741 issues * Refactor * Fix
This commit is contained in:
parent
db5215f60e
commit
a02de964d1
2
.flake8
2
.flake8
|
@ -1,7 +1,7 @@
|
|||
[flake8]
|
||||
max-line-length = 88
|
||||
# max-complexity should be 10
|
||||
max-complexity = 21
|
||||
max-complexity = 20
|
||||
extend-ignore =
|
||||
# Formatting style for `black`
|
||||
E203 # Whitespace before ':'
|
||||
|
|
|
@ -2,40 +2,45 @@ import sys
|
|||
from collections import defaultdict
|
||||
|
||||
|
||||
def prisms_algorithm(l): # noqa: E741
|
||||
class Heap:
|
||||
def __init__(self):
|
||||
self.node_position = []
|
||||
|
||||
node_position = []
|
||||
def get_position(self, vertex):
|
||||
return self.node_position[vertex]
|
||||
|
||||
def get_position(vertex):
|
||||
return node_position[vertex]
|
||||
def set_position(self, vertex, pos):
|
||||
self.node_position[vertex] = pos
|
||||
|
||||
def set_position(vertex, pos):
|
||||
node_position[vertex] = pos
|
||||
|
||||
def top_to_bottom(heap, start, size, positions):
|
||||
def top_to_bottom(self, heap, start, size, positions):
|
||||
if start > size // 2 - 1:
|
||||
return
|
||||
else:
|
||||
if 2 * start + 2 >= size:
|
||||
m = 2 * start + 1
|
||||
smallest_child = 2 * start + 1
|
||||
else:
|
||||
if heap[2 * start + 1] < heap[2 * start + 2]:
|
||||
m = 2 * start + 1
|
||||
smallest_child = 2 * start + 1
|
||||
else:
|
||||
m = 2 * start + 2
|
||||
if heap[m] < heap[start]:
|
||||
temp, temp1 = heap[m], positions[m]
|
||||
heap[m], positions[m] = heap[start], positions[start]
|
||||
smallest_child = 2 * start + 2
|
||||
if heap[smallest_child] < heap[start]:
|
||||
temp, temp1 = heap[smallest_child], positions[smallest_child]
|
||||
heap[smallest_child], positions[smallest_child] = (
|
||||
heap[start],
|
||||
positions[start],
|
||||
)
|
||||
heap[start], positions[start] = temp, temp1
|
||||
|
||||
temp = get_position(positions[m])
|
||||
set_position(positions[m], get_position(positions[start]))
|
||||
set_position(positions[start], temp)
|
||||
temp = self.get_position(positions[smallest_child])
|
||||
self.set_position(
|
||||
positions[smallest_child], self.get_position(positions[start])
|
||||
)
|
||||
self.set_position(positions[start], temp)
|
||||
|
||||
top_to_bottom(heap, m, size, positions)
|
||||
self.top_to_bottom(heap, smallest_child, size, positions)
|
||||
|
||||
# Update function if value of any node in min-heap decreases
|
||||
def bottom_to_top(val, index, heap, position):
|
||||
def bottom_to_top(self, val, index, heap, position):
|
||||
temp = position[index]
|
||||
|
||||
while index != 0:
|
||||
|
@ -47,70 +52,88 @@ def prisms_algorithm(l): # noqa: E741
|
|||
if val < heap[parent]:
|
||||
heap[index] = heap[parent]
|
||||
position[index] = position[parent]
|
||||
set_position(position[parent], index)
|
||||
self.set_position(position[parent], index)
|
||||
else:
|
||||
heap[index] = val
|
||||
position[index] = temp
|
||||
set_position(temp, index)
|
||||
self.set_position(temp, index)
|
||||
break
|
||||
index = parent
|
||||
else:
|
||||
heap[0] = val
|
||||
position[0] = temp
|
||||
set_position(temp, 0)
|
||||
self.set_position(temp, 0)
|
||||
|
||||
def heapify(heap, positions):
|
||||
def heapify(self, heap, positions):
|
||||
start = len(heap) // 2 - 1
|
||||
for i in range(start, -1, -1):
|
||||
top_to_bottom(heap, i, len(heap), positions)
|
||||
self.top_to_bottom(heap, i, len(heap), positions)
|
||||
|
||||
def delete_minimum(heap, positions):
|
||||
def delete_minimum(self, heap, positions):
|
||||
temp = positions[0]
|
||||
heap[0] = sys.maxsize
|
||||
top_to_bottom(heap, 0, len(heap), positions)
|
||||
self.top_to_bottom(heap, 0, len(heap), positions)
|
||||
return temp
|
||||
|
||||
visited = [0 for i in range(len(l))]
|
||||
nbr_tv = [-1 for i in range(len(l))] # Neighboring Tree Vertex of selected vertex
|
||||
|
||||
def prisms_algorithm(adjacency_list):
|
||||
"""
|
||||
>>> adjacency_list = {0: [[1, 1], [3, 3]],
|
||||
... 1: [[0, 1], [2, 6], [3, 5], [4, 1]],
|
||||
... 2: [[1, 6], [4, 5], [5, 2]],
|
||||
... 3: [[0, 3], [1, 5], [4, 1]],
|
||||
... 4: [[1, 1], [2, 5], [3, 1], [5, 4]],
|
||||
... 5: [[2, 2], [4, 4]]}
|
||||
>>> prisms_algorithm(adjacency_list)
|
||||
[(0, 1), (1, 4), (4, 3), (4, 5), (5, 2)]
|
||||
"""
|
||||
|
||||
heap = Heap()
|
||||
|
||||
visited = [0] * len(adjacency_list)
|
||||
nbr_tv = [-1] * len(adjacency_list) # Neighboring Tree Vertex of selected vertex
|
||||
# Minimum Distance of explored vertex with neighboring vertex of partial tree
|
||||
# formed in graph
|
||||
distance_tv = [] # Heap of Distance of vertices from their neighboring vertex
|
||||
positions = []
|
||||
|
||||
for x in range(len(l)):
|
||||
p = sys.maxsize
|
||||
distance_tv.append(p)
|
||||
positions.append(x)
|
||||
node_position.append(x)
|
||||
for vertex in range(len(adjacency_list)):
|
||||
distance_tv.append(sys.maxsize)
|
||||
positions.append(vertex)
|
||||
heap.node_position.append(vertex)
|
||||
|
||||
tree_edges = []
|
||||
visited[0] = 1
|
||||
distance_tv[0] = sys.maxsize
|
||||
for x in l[0]:
|
||||
nbr_tv[x[0]] = 0
|
||||
distance_tv[x[0]] = x[1]
|
||||
heapify(distance_tv, positions)
|
||||
for neighbor, distance in adjacency_list[0]:
|
||||
nbr_tv[neighbor] = 0
|
||||
distance_tv[neighbor] = distance
|
||||
heap.heapify(distance_tv, positions)
|
||||
|
||||
for _ in range(1, len(l)):
|
||||
vertex = delete_minimum(distance_tv, positions)
|
||||
for _ in range(1, len(adjacency_list)):
|
||||
vertex = heap.delete_minimum(distance_tv, positions)
|
||||
if visited[vertex] == 0:
|
||||
tree_edges.append((nbr_tv[vertex], vertex))
|
||||
visited[vertex] = 1
|
||||
for v in l[vertex]:
|
||||
if visited[v[0]] == 0 and v[1] < distance_tv[get_position(v[0])]:
|
||||
distance_tv[get_position(v[0])] = v[1]
|
||||
bottom_to_top(v[1], get_position(v[0]), distance_tv, positions)
|
||||
nbr_tv[v[0]] = vertex
|
||||
for neighbor, distance in adjacency_list[vertex]:
|
||||
if (
|
||||
visited[neighbor] == 0
|
||||
and distance < distance_tv[heap.get_position(neighbor)]
|
||||
):
|
||||
distance_tv[heap.get_position(neighbor)] = distance
|
||||
heap.bottom_to_top(
|
||||
distance, heap.get_position(neighbor), distance_tv, positions
|
||||
)
|
||||
nbr_tv[neighbor] = vertex
|
||||
return tree_edges
|
||||
|
||||
|
||||
if __name__ == "__main__": # pragma: no cover
|
||||
# < --------- Prims Algorithm --------- >
|
||||
n = int(input("Enter number of vertices: ").strip())
|
||||
e = int(input("Enter number of edges: ").strip())
|
||||
adjlist = defaultdict(list)
|
||||
for x in range(e):
|
||||
l = [int(x) for x in input().strip().split()] # noqa: E741
|
||||
adjlist[l[0]].append([l[1], l[2]])
|
||||
adjlist[l[1]].append([l[0], l[2]])
|
||||
print(prisms_algorithm(adjlist))
|
||||
edges_number = int(input("Enter number of edges: ").strip())
|
||||
adjacency_list = defaultdict(list)
|
||||
for _ in range(edges_number):
|
||||
edge = [int(x) for x in input().strip().split()]
|
||||
adjacency_list[edge[0]].append([edge[1], edge[2]])
|
||||
adjacency_list[edge[1]].append([edge[0], edge[2]])
|
||||
print(prisms_algorithm(adjacency_list))
|
||||
|
|
Loading…
Reference in New Issue
Block a user