mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
commit
a033150426
|
@ -9,13 +9,13 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us
|
|||
return a
|
||||
elif function(b) == 0:
|
||||
return b
|
||||
elif function(a) * function(b) > 0: # if noone of these are root and they are both possitive or negative,
|
||||
# then his algorith can't find the root
|
||||
elif function(a) * function(b) > 0: # if none of these are root and they are both positive or negative,
|
||||
# then his algorithm can't find the root
|
||||
print("couldn't find root in [a,b]")
|
||||
return
|
||||
else:
|
||||
mid = (start + end) / 2
|
||||
while abs(start - mid) > 0.0000001: # untill we achive percise equals to 10^-7
|
||||
while abs(start - mid) > 0.0000001: # until we achieve precise equals to 10^-7
|
||||
if function(mid) == 0:
|
||||
return mid
|
||||
elif function(mid) * function(start) < 0:
|
||||
|
@ -27,7 +27,7 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us
|
|||
|
||||
|
||||
def f(x):
|
||||
return math.pow(x, 3) - 2*x -5
|
||||
return math.pow(x, 3) - 2*x - 5
|
||||
|
||||
|
||||
print(bisection(f, 1, 1000))
|
||||
|
|
Loading…
Reference in New Issue
Block a user