mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Add Equal Loudness Filter (#7019)
* Add Equal Loudness Filter Signed-off-by: Martmists <martmists@gmail.com> * NoneType return on __init__ Signed-off-by: Martmists <martmists@gmail.com> * Add data to JSON as requested by @CenTdemeern1 in a not very polite manner Signed-off-by: Martmists <martmists@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 'modernize' Signed-off-by: Martmists <martmists@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update audio_filters/equal_loudness_filter.py Co-authored-by: Christian Clauss <cclauss@me.com> * Update equal_loudness_filter.py * Update equal_loudness_filter.py * Finally!! * Arrgghh Signed-off-by: Martmists <martmists@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
f0d1a42deb
commit
a04a6365de
61
audio_filters/equal_loudness_filter.py
Normal file
61
audio_filters/equal_loudness_filter.py
Normal file
|
@ -0,0 +1,61 @@
|
|||
from json import loads
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from yulewalker import yulewalk
|
||||
|
||||
from audio_filters.butterworth_filter import make_highpass
|
||||
from audio_filters.iir_filter import IIRFilter
|
||||
|
||||
data = loads((Path(__file__).resolve().parent / "loudness_curve.json").read_text())
|
||||
|
||||
|
||||
class EqualLoudnessFilter:
|
||||
r"""
|
||||
An equal-loudness filter which compensates for the human ear's non-linear response
|
||||
to sound.
|
||||
This filter corrects this by cascading a yulewalk filter and a butterworth filter.
|
||||
|
||||
Designed for use with samplerate of 44.1kHz and above. If you're using a lower
|
||||
samplerate, use with caution.
|
||||
|
||||
Code based on matlab implementation at https://bit.ly/3eqh2HU
|
||||
(url shortened for flake8)
|
||||
|
||||
Target curve: https://i.imgur.com/3g2VfaM.png
|
||||
Yulewalk response: https://i.imgur.com/J9LnJ4C.png
|
||||
Butterworth and overall response: https://i.imgur.com/3g2VfaM.png
|
||||
|
||||
Images and original matlab implementation by David Robinson, 2001
|
||||
"""
|
||||
|
||||
def __init__(self, samplerate: int = 44100) -> None:
|
||||
self.yulewalk_filter = IIRFilter(10)
|
||||
self.butterworth_filter = make_highpass(150, samplerate)
|
||||
|
||||
# pad the data to nyquist
|
||||
curve_freqs = np.array(data["frequencies"] + [max(20000.0, samplerate / 2)])
|
||||
curve_gains = np.array(data["gains"] + [140])
|
||||
|
||||
# Convert to angular frequency
|
||||
freqs_normalized = curve_freqs / samplerate * 2
|
||||
# Invert the curve and normalize to 0dB
|
||||
gains_normalized = np.power(10, (np.min(curve_gains) - curve_gains) / 20)
|
||||
|
||||
# Scipy's `yulewalk` function is a stub, so we're using the
|
||||
# `yulewalker` library instead.
|
||||
# This function computes the coefficients using a least-squares
|
||||
# fit to the specified curve.
|
||||
ya, yb = yulewalk(10, freqs_normalized, gains_normalized)
|
||||
self.yulewalk_filter.set_coefficients(ya, yb)
|
||||
|
||||
def process(self, sample: float) -> float:
|
||||
"""
|
||||
Process a single sample through both filters
|
||||
|
||||
>>> filt = EqualLoudnessFilter()
|
||||
>>> filt.process(0.0)
|
||||
0.0
|
||||
"""
|
||||
tmp = self.yulewalk_filter.process(sample)
|
||||
return self.butterworth_filter.process(tmp)
|
76
audio_filters/loudness_curve.json
Normal file
76
audio_filters/loudness_curve.json
Normal file
|
@ -0,0 +1,76 @@
|
|||
{
|
||||
"_comment": "The following is a representative average of the Equal Loudness Contours as measured by Robinson and Dadson, 1956",
|
||||
"_doi": "10.1088/0508-3443/7/5/302",
|
||||
"frequencies": [
|
||||
0,
|
||||
20,
|
||||
30,
|
||||
40,
|
||||
50,
|
||||
60,
|
||||
70,
|
||||
80,
|
||||
90,
|
||||
100,
|
||||
200,
|
||||
300,
|
||||
400,
|
||||
500,
|
||||
600,
|
||||
700,
|
||||
800,
|
||||
900,
|
||||
1000,
|
||||
1500,
|
||||
2000,
|
||||
2500,
|
||||
3000,
|
||||
3700,
|
||||
4000,
|
||||
5000,
|
||||
6000,
|
||||
7000,
|
||||
8000,
|
||||
9000,
|
||||
10000,
|
||||
12000,
|
||||
15000,
|
||||
20000
|
||||
],
|
||||
"gains": [
|
||||
120,
|
||||
113,
|
||||
103,
|
||||
97,
|
||||
93,
|
||||
91,
|
||||
89,
|
||||
87,
|
||||
86,
|
||||
85,
|
||||
78,
|
||||
76,
|
||||
76,
|
||||
76,
|
||||
76,
|
||||
77,
|
||||
78,
|
||||
79.5,
|
||||
80,
|
||||
79,
|
||||
77,
|
||||
74,
|
||||
71.5,
|
||||
70,
|
||||
70.5,
|
||||
74,
|
||||
79,
|
||||
84,
|
||||
86,
|
||||
86,
|
||||
85,
|
||||
95,
|
||||
110,
|
||||
125
|
||||
]
|
||||
}
|
|
@ -17,3 +17,4 @@ tensorflow
|
|||
texttable
|
||||
tweepy
|
||||
xgboost
|
||||
yulewalker
|
||||
|
|
Loading…
Reference in New Issue
Block a user