Rewrite build_directory_md.py (#1076)

* Rewrite build_directory_md.py

* Regenerate DIRECTORY.md
This commit is contained in:
Christian Clauss 2019-07-28 17:27:23 +02:00 committed by GitHub
parent 3b63857b65
commit a0817bdcf0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 49 additions and 72 deletions

View File

@ -19,5 +19,5 @@ script:
--ignore=machine_learning/random_forest_classification/random_forest_classification.py
--ignore=machine_learning/random_forest_regression/random_forest_regression.py
after_success:
- python scripts/build_directory_md.py
- scripts/build_directory_md.py > DIRECTORY.md
- cat DIRECTORY.md

View File

@ -1,5 +1,6 @@
## Arithmetic Analysis
* [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py)
* [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py)
* [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py)
* [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py)
* [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py)
@ -42,7 +43,6 @@
* [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py)
* [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py)
* [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py)
* Image Data
## Conversions
* [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py)
* [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py)
@ -62,9 +62,9 @@
* [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py)
* [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py)
* [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py)
* [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py)
* Number Theory
* [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py)
* [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py)
* Heap
* [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py)
* Linked List
@ -87,6 +87,7 @@
* Trie
* [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py)
## Digital Image Processing
* [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py)
* Edge Detection
* [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py)
* Filters
@ -94,7 +95,6 @@
* [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py)
* [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py)
* [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py)
* Image Data
## Divide And Conquer
* [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py)
* [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py)
@ -167,24 +167,22 @@
* [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/lib.py)
* [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/tests.py)
## Machine Learning
* [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb)
* [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py)
* [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py)
* [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py)
* [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py)
* [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py)
* [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py)
* [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb)
* [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py)
* [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb)
* [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py)
* Random Forest Classification
* [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py)
* [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb)
* [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/Social_Network_Ads.csv)
* Random Forest Regression
* [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/Position_Salaries.csv)
* [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb)
* [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py)
* [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb)
* [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py)
## Maths
* [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py)
* [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py)
@ -203,11 +201,15 @@
* [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py)
* [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py)
* [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py)
* [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py)
* [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py)
* [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py)
* [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py)
* [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py)
* [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py)
* [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py)
* [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py)
* [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py)
* [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py)
* [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py)
* [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py)
@ -219,6 +221,8 @@
* [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py)
* [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py)
* [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py)
* Tests
* [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py)
## Networking Flow
* [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py)
* [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py)
@ -228,6 +232,7 @@
* [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb)
* [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py)
## Other
* [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb)
* [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py)
* [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py)
* [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py)
@ -235,7 +240,6 @@
* [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py)
* [finding primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_primes.py)
* [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py)
* [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb)
* [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py)
* [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py)
* [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py)
@ -247,7 +251,6 @@
* [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py)
* [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py)
* [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py)
* [words](https://github.com/TheAlgorithms/Python/blob/master/other/words)
## Project Euler
* Problem 01
* [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py)

96
scripts/build_directory_md.py Normal file → Executable file
View File

@ -1,71 +1,45 @@
"""
This is a simple script that will scan through the current directory
and generate the corresponding DIRECTORY.md file, can also specify
files or folders to be ignored.
"""
#!/usr/bin/env python3
import os
from typing import Iterator
URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master"
# Target URL (master)
URL = "https://github.com/TheAlgorithms/Python/blob/master/"
def good_filepaths(top_dir: str = ".") -> Iterator[str]:
for dirpath, dirnames, filenames in os.walk(top_dir):
dirnames[:] = [d for d in dirnames if d != "scripts" and d[0] not in "._"]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(filename)[1] in (".py", ".ipynb"):
yield os.path.join(dirpath, filename).lstrip("./")
def tree(d, ignores, ignores_ext):
return _markdown(d, ignores, ignores_ext, 0)
def _markdown(parent, ignores, ignores_ext, depth):
out = ""
dirs, files = [], []
for i in os.listdir(parent):
full = os.path.join(parent, i)
name, ext = os.path.splitext(i)
if i not in ignores and ext not in ignores_ext:
if os.path.isfile(full):
# generate list
pre = parent.replace("./", "").replace(" ", "%20")
# replace all spaces to safe URL
child = i.replace(" ", "%20")
files.append((pre, child, name))
else:
dirs.append(i)
# Sort files
files.sort(key=lambda e: e[2].lower())
for f in files:
pre, child, name = f
out += " " * depth + "* [" + name.replace("_", " ") + "](" + URL + pre + "/" + child + ")\n"
# Sort directories
dirs.sort()
for i in dirs:
full = os.path.join(parent, i)
i = i.replace("_", " ").title()
if depth == 0:
out += "## " + i + "\n"
else:
out += " " * depth + "* " + i + "\n"
out += _markdown(full, ignores, ignores_ext, depth+1)
return out
def md_prefix(i):
return f"{i * ' '}*" if i else "##"
# Specific files or folders with the given names will be ignored
ignores = [".vs",
".gitignore",
".git",
"scripts",
"__init__.py",
"requirements.txt",
".github"
]
# Files with given entensions will be ignored
ignores_ext = [
".md",
".ipynb",
".png",
".jpg",
".yml"
]
def print_path(old_path: str, new_path: str) -> str:
old_parts = old_path.split(os.sep)
for i, new_part in enumerate(new_path.split(os.sep)):
if i + 1 > len(old_parts) or old_parts[i] != new_part:
if new_part:
print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}")
return new_path
def print_directory_md(top_dir: str = ".") -> None:
old_path = ""
for filepath in sorted(good_filepaths()):
filepath, filename = os.path.split(filepath)
if filepath != old_path:
old_path = print_path(old_path, filepath)
indent = (filepath.count(os.sep) + 1) if filepath else 0
url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20")
filename = os.path.splitext(filename.replace("_", " "))[0]
print(f"{md_prefix(indent)} [{filename}]({url})")
if __name__ == "__main__":
with open("DIRECTORY.md", "w+") as f:
f.write(tree(".", ignores, ignores_ext))
print_directory_md(".")