mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Rewrite build_directory_md.py (#1076)
* Rewrite build_directory_md.py * Regenerate DIRECTORY.md
This commit is contained in:
parent
3b63857b65
commit
a0817bdcf0
|
@ -19,5 +19,5 @@ script:
|
|||
--ignore=machine_learning/random_forest_classification/random_forest_classification.py
|
||||
--ignore=machine_learning/random_forest_regression/random_forest_regression.py
|
||||
after_success:
|
||||
- python scripts/build_directory_md.py
|
||||
- scripts/build_directory_md.py > DIRECTORY.md
|
||||
- cat DIRECTORY.md
|
||||
|
|
23
DIRECTORY.md
23
DIRECTORY.md
|
@ -1,5 +1,6 @@
|
|||
## Arithmetic Analysis
|
||||
* [bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py)
|
||||
* [in static equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py)
|
||||
* [intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py)
|
||||
* [lu decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py)
|
||||
* [newton method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py)
|
||||
|
@ -42,7 +43,6 @@
|
|||
* [burrows wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py)
|
||||
* [huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py)
|
||||
* [peak signal to noise ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py)
|
||||
* Image Data
|
||||
## Conversions
|
||||
* [decimal to binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py)
|
||||
* [decimal to hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py)
|
||||
|
@ -62,9 +62,9 @@
|
|||
* [double hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py)
|
||||
* [hash table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py)
|
||||
* [hash table with linked list](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py)
|
||||
* [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py)
|
||||
* Number Theory
|
||||
* [prime numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py)
|
||||
* [quadratic probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py)
|
||||
* Heap
|
||||
* [heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py)
|
||||
* Linked List
|
||||
|
@ -87,6 +87,7 @@
|
|||
* Trie
|
||||
* [trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py)
|
||||
## Digital Image Processing
|
||||
* [change contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py)
|
||||
* Edge Detection
|
||||
* [canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py)
|
||||
* Filters
|
||||
|
@ -94,7 +95,6 @@
|
|||
* [gaussian filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py)
|
||||
* [median filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py)
|
||||
* [sobel filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py)
|
||||
* Image Data
|
||||
## Divide And Conquer
|
||||
* [closest pair of points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py)
|
||||
* [max subarray sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py)
|
||||
|
@ -167,24 +167,22 @@
|
|||
* [lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/lib.py)
|
||||
* [tests](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra_python/src/tests.py)
|
||||
## Machine Learning
|
||||
* [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb)
|
||||
* [decision tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py)
|
||||
* [gradient descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py)
|
||||
* [k means clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py)
|
||||
* [knn sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py)
|
||||
* [linear regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py)
|
||||
* [logistic regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py)
|
||||
* [NaiveBayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/NaiveBayes.ipynb)
|
||||
* [perceptron](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/perceptron.py)
|
||||
* [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb)
|
||||
* [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py)
|
||||
* Random Forest Classification
|
||||
* [random forest classification](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classification.py)
|
||||
* [random forest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/random_forest_classifier.ipynb)
|
||||
* [Social Network Ads](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classification/Social_Network_Ads.csv)
|
||||
* Random Forest Regression
|
||||
* [Position Salaries](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/Position_Salaries.csv)
|
||||
* [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.ipynb)
|
||||
* [random forest regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regression/random_forest_regression.py)
|
||||
* [reuters one vs rest classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/reuters_one_vs_rest_classifier.ipynb)
|
||||
* [scoring functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py)
|
||||
## Maths
|
||||
* [3n+1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n+1.py)
|
||||
* [abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py)
|
||||
|
@ -203,11 +201,15 @@
|
|||
* [find lcm](https://github.com/TheAlgorithms/Python/blob/master/maths/find_lcm.py)
|
||||
* [find max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py)
|
||||
* [find min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py)
|
||||
* [gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py)
|
||||
* [greater common divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greater_common_divisor.py)
|
||||
* [is square free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py)
|
||||
* [lucas series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py)
|
||||
* [mobius function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py)
|
||||
* [modular exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py)
|
||||
* [newton raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py)
|
||||
* [prime check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py)
|
||||
* [prime factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py)
|
||||
* [segmented sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py)
|
||||
* [sieve of eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py)
|
||||
* [simpson rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py)
|
||||
|
@ -219,6 +221,8 @@
|
|||
* [rotate matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py)
|
||||
* [searching in sorted matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py)
|
||||
* [spiral print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py)
|
||||
* Tests
|
||||
* [test matrix operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py)
|
||||
## Networking Flow
|
||||
* [ford fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py)
|
||||
* [minimum cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py)
|
||||
|
@ -228,6 +232,7 @@
|
|||
* [fully connected neural network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/fully_connected_neural_network.ipynb)
|
||||
* [perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py)
|
||||
## Other
|
||||
* [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb)
|
||||
* [anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py)
|
||||
* [binary exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py)
|
||||
* [binary exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py)
|
||||
|
@ -235,7 +240,6 @@
|
|||
* [euclidean gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py)
|
||||
* [finding primes](https://github.com/TheAlgorithms/Python/blob/master/other/finding_primes.py)
|
||||
* [fischer yates shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py)
|
||||
* [Food wastage analysis from 1961-2013 (FAO)](https://github.com/TheAlgorithms/Python/blob/master/other/Food%20wastage%20analysis%20from%201961-2013%20(FAO).ipynb)
|
||||
* [frequency finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py)
|
||||
* [game of life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py)
|
||||
* [linear congruential generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py)
|
||||
|
@ -247,7 +251,6 @@
|
|||
* [tower of hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py)
|
||||
* [two sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py)
|
||||
* [word patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py)
|
||||
* [words](https://github.com/TheAlgorithms/Python/blob/master/other/words)
|
||||
## Project Euler
|
||||
* Problem 01
|
||||
* [sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_01/sol1.py)
|
||||
|
|
96
scripts/build_directory_md.py
Normal file → Executable file
96
scripts/build_directory_md.py
Normal file → Executable file
|
@ -1,71 +1,45 @@
|
|||
"""
|
||||
This is a simple script that will scan through the current directory
|
||||
and generate the corresponding DIRECTORY.md file, can also specify
|
||||
files or folders to be ignored.
|
||||
"""
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
from typing import Iterator
|
||||
|
||||
URL_BASE = "https://github.com/TheAlgorithms/Python/blob/master"
|
||||
|
||||
|
||||
# Target URL (master)
|
||||
URL = "https://github.com/TheAlgorithms/Python/blob/master/"
|
||||
def good_filepaths(top_dir: str = ".") -> Iterator[str]:
|
||||
for dirpath, dirnames, filenames in os.walk(top_dir):
|
||||
dirnames[:] = [d for d in dirnames if d != "scripts" and d[0] not in "._"]
|
||||
for filename in filenames:
|
||||
if filename == "__init__.py":
|
||||
continue
|
||||
if os.path.splitext(filename)[1] in (".py", ".ipynb"):
|
||||
yield os.path.join(dirpath, filename).lstrip("./")
|
||||
|
||||
|
||||
def tree(d, ignores, ignores_ext):
|
||||
return _markdown(d, ignores, ignores_ext, 0)
|
||||
|
||||
|
||||
def _markdown(parent, ignores, ignores_ext, depth):
|
||||
out = ""
|
||||
dirs, files = [], []
|
||||
for i in os.listdir(parent):
|
||||
full = os.path.join(parent, i)
|
||||
name, ext = os.path.splitext(i)
|
||||
if i not in ignores and ext not in ignores_ext:
|
||||
if os.path.isfile(full):
|
||||
# generate list
|
||||
pre = parent.replace("./", "").replace(" ", "%20")
|
||||
# replace all spaces to safe URL
|
||||
child = i.replace(" ", "%20")
|
||||
files.append((pre, child, name))
|
||||
else:
|
||||
dirs.append(i)
|
||||
# Sort files
|
||||
files.sort(key=lambda e: e[2].lower())
|
||||
for f in files:
|
||||
pre, child, name = f
|
||||
out += " " * depth + "* [" + name.replace("_", " ") + "](" + URL + pre + "/" + child + ")\n"
|
||||
# Sort directories
|
||||
dirs.sort()
|
||||
for i in dirs:
|
||||
full = os.path.join(parent, i)
|
||||
i = i.replace("_", " ").title()
|
||||
if depth == 0:
|
||||
out += "## " + i + "\n"
|
||||
else:
|
||||
out += " " * depth + "* " + i + "\n"
|
||||
out += _markdown(full, ignores, ignores_ext, depth+1)
|
||||
return out
|
||||
def md_prefix(i):
|
||||
return f"{i * ' '}*" if i else "##"
|
||||
|
||||
|
||||
# Specific files or folders with the given names will be ignored
|
||||
ignores = [".vs",
|
||||
".gitignore",
|
||||
".git",
|
||||
"scripts",
|
||||
"__init__.py",
|
||||
"requirements.txt",
|
||||
".github"
|
||||
]
|
||||
# Files with given entensions will be ignored
|
||||
ignores_ext = [
|
||||
".md",
|
||||
".ipynb",
|
||||
".png",
|
||||
".jpg",
|
||||
".yml"
|
||||
]
|
||||
def print_path(old_path: str, new_path: str) -> str:
|
||||
old_parts = old_path.split(os.sep)
|
||||
for i, new_part in enumerate(new_path.split(os.sep)):
|
||||
if i + 1 > len(old_parts) or old_parts[i] != new_part:
|
||||
if new_part:
|
||||
print(f"{md_prefix(i)} {new_part.replace('_', ' ').title()}")
|
||||
return new_path
|
||||
|
||||
|
||||
def print_directory_md(top_dir: str = ".") -> None:
|
||||
old_path = ""
|
||||
for filepath in sorted(good_filepaths()):
|
||||
filepath, filename = os.path.split(filepath)
|
||||
if filepath != old_path:
|
||||
old_path = print_path(old_path, filepath)
|
||||
indent = (filepath.count(os.sep) + 1) if filepath else 0
|
||||
url = "/".join((URL_BASE, filepath, filename)).replace(" ", "%20")
|
||||
filename = os.path.splitext(filename.replace("_", " "))[0]
|
||||
print(f"{md_prefix(indent)} [{filename}]({url})")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
with open("DIRECTORY.md", "w+") as f:
|
||||
f.write(tree(".", ignores, ignores_ext))
|
||||
print_directory_md(".")
|
||||
|
|
Loading…
Reference in New Issue
Block a user