mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-25 18:38:39 +00:00
Update q_fourier_transform.py
This commit is contained in:
parent
260e3d8b35
commit
a1c22f79e4
@ -1,96 +1,55 @@
|
||||
"""
|
||||
Build the quantum fourier transform (qft) for a desire
|
||||
number of quantum bits using Qiskit framework. This
|
||||
experiment run in IBM Q simulator with 10000 shots.
|
||||
This circuit can be use as a building block to design
|
||||
the Shor's algorithm in quantum computing. As well as,
|
||||
quantum phase estimation among others.
|
||||
.
|
||||
References:
|
||||
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
|
||||
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import qiskit
|
||||
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
|
||||
|
||||
|
||||
def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts:
|
||||
def quantum_fourier_transform(number_of_qubits: int = 3) -> dict:
|
||||
"""
|
||||
# >>> quantum_fourier_transform(2)
|
||||
# {'00': 2500, '01': 2500, '11': 2500, '10': 2500}
|
||||
# quantum circuit for number_of_qubits = 3:
|
||||
┌───┐
|
||||
qr_0: ──────■──────────────────────■───────┤ H ├─X─
|
||||
│ ┌───┐ │P(π/2) └───┘ │
|
||||
qr_1: ──────┼────────■───────┤ H ├─■─────────────┼─
|
||||
┌───┐ │P(π/4) │P(π/2) └───┘ │
|
||||
qr_2: ┤ H ├─■────────■───────────────────────────X─
|
||||
└───┘
|
||||
cr: 3/═════════════════════════════════════════════
|
||||
Build and simulate the Quantum Fourier Transform (QFT) circuit
|
||||
for a given number of qubits using the Qiskit framework.
|
||||
|
||||
Args:
|
||||
n : number of qubits
|
||||
Returns:
|
||||
qiskit.result.counts.Counts: distribute counts.
|
||||
number_of_qubits (int): The number of qubits for the QFT circuit.
|
||||
|
||||
>>> quantum_fourier_transform(2)
|
||||
{'00': 2500, '01': 2500, '10': 2500, '11': 2500}
|
||||
>>> quantum_fourier_transform(-1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: number of qubits must be > 0.
|
||||
>>> quantum_fourier_transform('a')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: number of qubits must be a integer.
|
||||
>>> quantum_fourier_transform(100)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: number of qubits too large to simulate(>10).
|
||||
>>> quantum_fourier_transform(0.5)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: number of qubits must be exact integer.
|
||||
Returns:
|
||||
dict: A dictionary containing the counts of measurement results.
|
||||
|
||||
Raises:
|
||||
ValueError: If the number of qubits is less than or equal to 0,
|
||||
greater than 10, or not an integer.
|
||||
TypeError: If the input is not an integer.
|
||||
"""
|
||||
if isinstance(number_of_qubits, str):
|
||||
raise TypeError("number of qubits must be a integer.")
|
||||
if not isinstance(number_of_qubits, int):
|
||||
raise TypeError("Number of qubits must be an integer.")
|
||||
if number_of_qubits <= 0:
|
||||
raise ValueError("number of qubits must be > 0.")
|
||||
if math.floor(number_of_qubits) != number_of_qubits:
|
||||
raise ValueError("number of qubits must be exact integer.")
|
||||
raise ValueError("Number of qubits must be > 0.")
|
||||
if number_of_qubits > 10:
|
||||
raise ValueError("number of qubits too large to simulate(>10).")
|
||||
raise ValueError("Number of qubits too large to simulate (>10).")
|
||||
|
||||
qr = QuantumRegister(number_of_qubits, "qr")
|
||||
cr = ClassicalRegister(number_of_qubits, "cr")
|
||||
|
||||
quantum_circuit = QuantumCircuit(qr, cr)
|
||||
|
||||
counter = number_of_qubits
|
||||
# Apply the QFT circuit
|
||||
for i in range(number_of_qubits):
|
||||
quantum_circuit.h(i)
|
||||
for j in range(i + 1, number_of_qubits):
|
||||
quantum_circuit.cp(np.pi / 2 ** (j - i), j, i)
|
||||
|
||||
for i in range(counter):
|
||||
quantum_circuit.h(number_of_qubits - i - 1)
|
||||
counter -= 1
|
||||
for j in range(counter):
|
||||
quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter)
|
||||
# Swap the qubits
|
||||
for i in range(number_of_qubits // 2):
|
||||
quantum_circuit.swap(i, number_of_qubits - i - 1)
|
||||
|
||||
for k in range(number_of_qubits // 2):
|
||||
quantum_circuit.swap(k, number_of_qubits - k - 1)
|
||||
|
||||
# measure all the qubits
|
||||
# Measure all qubits
|
||||
quantum_circuit.measure(qr, cr)
|
||||
# simulate with 10000 shots
|
||||
|
||||
# Simulate the circuit with 10000 shots
|
||||
backend = Aer.get_backend("qasm_simulator")
|
||||
job = execute(quantum_circuit, backend, shots=10000)
|
||||
result = job.result()
|
||||
|
||||
return job.result().get_counts(quantum_circuit)
|
||||
return result.get_counts(quantum_circuit)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(
|
||||
f"Total count for quantum fourier transform state is: \
|
||||
{quantum_fourier_transform(3)}"
|
||||
)
|
||||
result_counts = quantum_fourier_transform(3)
|
||||
print(f"Total count for quantum fourier transform state is: {result_counts}")
|
||||
|
Loading…
x
Reference in New Issue
Block a user