Update q_fourier_transform.py

This commit is contained in:
Riddhima Deshmukh 2024-10-08 18:02:43 +05:30 committed by GitHub
parent 260e3d8b35
commit a1c22f79e4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,96 +1,55 @@
"""
Build the quantum fourier transform (qft) for a desire
number of quantum bits using Qiskit framework. This
experiment run in IBM Q simulator with 10000 shots.
This circuit can be use as a building block to design
the Shor's algorithm in quantum computing. As well as,
quantum phase estimation among others.
.
References:
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html
"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts:
def quantum_fourier_transform(number_of_qubits: int = 3) -> dict:
"""
# >>> quantum_fourier_transform(2)
# {'00': 2500, '01': 2500, '11': 2500, '10': 2500}
# quantum circuit for number_of_qubits = 3:
qr_0: H X
P(π/2)
qr_1: H
P(π/4) P(π/2)
qr_2: H X
cr: 3/
Build and simulate the Quantum Fourier Transform (QFT) circuit
for a given number of qubits using the Qiskit framework.
Args:
n : number of qubits
Returns:
qiskit.result.counts.Counts: distribute counts.
number_of_qubits (int): The number of qubits for the QFT circuit.
>>> quantum_fourier_transform(2)
{'00': 2500, '01': 2500, '10': 2500, '11': 2500}
>>> quantum_fourier_transform(-1)
Traceback (most recent call last):
...
ValueError: number of qubits must be > 0.
>>> quantum_fourier_transform('a')
Traceback (most recent call last):
...
TypeError: number of qubits must be a integer.
>>> quantum_fourier_transform(100)
Traceback (most recent call last):
...
ValueError: number of qubits too large to simulate(>10).
>>> quantum_fourier_transform(0.5)
Traceback (most recent call last):
...
ValueError: number of qubits must be exact integer.
Returns:
dict: A dictionary containing the counts of measurement results.
Raises:
ValueError: If the number of qubits is less than or equal to 0,
greater than 10, or not an integer.
TypeError: If the input is not an integer.
"""
if isinstance(number_of_qubits, str):
raise TypeError("number of qubits must be a integer.")
if not isinstance(number_of_qubits, int):
raise TypeError("Number of qubits must be an integer.")
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0.")
if math.floor(number_of_qubits) != number_of_qubits:
raise ValueError("number of qubits must be exact integer.")
raise ValueError("Number of qubits must be > 0.")
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10).")
raise ValueError("Number of qubits too large to simulate (>10).")
qr = QuantumRegister(number_of_qubits, "qr")
cr = ClassicalRegister(number_of_qubits, "cr")
quantum_circuit = QuantumCircuit(qr, cr)
counter = number_of_qubits
# Apply the QFT circuit
for i in range(number_of_qubits):
quantum_circuit.h(i)
for j in range(i + 1, number_of_qubits):
quantum_circuit.cp(np.pi / 2 ** (j - i), j, i)
for i in range(counter):
quantum_circuit.h(number_of_qubits - i - 1)
counter -= 1
for j in range(counter):
quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter)
# Swap the qubits
for i in range(number_of_qubits // 2):
quantum_circuit.swap(i, number_of_qubits - i - 1)
for k in range(number_of_qubits // 2):
quantum_circuit.swap(k, number_of_qubits - k - 1)
# measure all the qubits
# Measure all qubits
quantum_circuit.measure(qr, cr)
# simulate with 10000 shots
# Simulate the circuit with 10000 shots
backend = Aer.get_backend("qasm_simulator")
job = execute(quantum_circuit, backend, shots=10000)
result = job.result()
return job.result().get_counts(quantum_circuit)
return result.get_counts(quantum_circuit)
if __name__ == "__main__":
print(
f"Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"
)
result_counts = quantum_fourier_transform(3)
print(f"Total count for quantum fourier transform state is: {result_counts}")