mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Added sequential minimum optimization algorithm for SVM (#508)
* Implementation of sequential minimal optimization algorithm * Update smo.py * Add demonstration of svm partition boundary 1:Use matplotlib show svm's partition boundary 2:Automatically download test dataset * Update smo.py * Update smo.py * Rename smo.py to sequential_minimum_optimization.py * Update doc and simplify the code. Fix filename typo error in doc. Use ternary conditional operator in predict() * Update doc.
This commit is contained in:
parent
768700b91f
commit
a2b5a90c11
526
machine_learning/sequential_minimum_optimization.py
Normal file
526
machine_learning/sequential_minimum_optimization.py
Normal file
|
@ -0,0 +1,526 @@
|
|||
# coding: utf-8
|
||||
"""
|
||||
Implementation of sequential minimal optimization(SMO) for support vector machines(SVM).
|
||||
|
||||
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem
|
||||
that arises during the training of support vector machines.
|
||||
It was invented by John Platt in 1998.
|
||||
|
||||
Input:
|
||||
0: type: numpy.ndarray.
|
||||
1: first column of ndarray must be tags of samples, must be 1 or -1.
|
||||
2: rows of ndarray represent samples.
|
||||
|
||||
Usage:
|
||||
Command:
|
||||
python3 sequential_minimum_optimization.py
|
||||
Code:
|
||||
from sequential_minimum_optimization import SmoSVM, Kernel
|
||||
|
||||
kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
|
||||
init_alphas = np.zeros(train.shape[0])
|
||||
SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4, b=0.0, tolerance=0.001)
|
||||
SVM.fit()
|
||||
predict = SVM.predict(test_samples)
|
||||
|
||||
Reference:
|
||||
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
|
||||
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
|
||||
http://web.cs.iastate.edu/~honavar/smo-svm.pdf
|
||||
"""
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import os
|
||||
import sys
|
||||
import urllib.request
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.datasets import make_blobs, make_circles
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
CANCER_DATASET_URL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'
|
||||
|
||||
|
||||
class SmoSVM(object):
|
||||
def __init__(self, train, kernel_func, alpha_list=None, cost=0.4, b=0.0, tolerance=0.001, auto_norm=True):
|
||||
self._init = True
|
||||
self._auto_norm = auto_norm
|
||||
self._c = np.float64(cost)
|
||||
self._b = np.float64(b)
|
||||
self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
|
||||
|
||||
self.tags = train[:, 0]
|
||||
self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
|
||||
self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
|
||||
self.Kernel = kernel_func
|
||||
|
||||
self._eps = 0.001
|
||||
self._all_samples = list(range(self.length))
|
||||
self._K_matrix = self._calculate_k_matrix()
|
||||
self._error = np.zeros(self.length)
|
||||
self._unbound = []
|
||||
|
||||
self.choose_alpha = self._choose_alphas()
|
||||
|
||||
# Calculate alphas using SMO algorithsm
|
||||
def fit(self):
|
||||
K = self._k
|
||||
state = None
|
||||
while True:
|
||||
|
||||
# 1: Find alpha1, alpha2
|
||||
try:
|
||||
i1, i2 = self.choose_alpha.send(state)
|
||||
state = None
|
||||
except StopIteration:
|
||||
print("Optimization done!\r\nEvery sample satisfy the KKT condition!")
|
||||
break
|
||||
|
||||
# 2: calculate new alpha2 and new alpha1
|
||||
y1, y2 = self.tags[i1], self.tags[i2]
|
||||
a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
|
||||
e1, e2 = self._e(i1), self._e(i2)
|
||||
args = (i1, i2, a1, a2, e1, e2, y1, y2)
|
||||
a1_new, a2_new = self._get_new_alpha(*args)
|
||||
if not a1_new and not a2_new:
|
||||
state = False
|
||||
continue
|
||||
self.alphas[i1], self.alphas[i2] = a1_new, a2_new
|
||||
|
||||
# 3: update threshold(b)
|
||||
b1_new = np.float64(-e1 - y1 * K(i1, i1) * (a1_new - a1) - y2 * K(i2, i1) * (a2_new - a2) + self._b)
|
||||
b2_new = np.float64(-e2 - y2 * K(i2, i2) * (a2_new - a2) - y1 * K(i1, i2) * (a1_new - a1) + self._b)
|
||||
if 0.0 < a1_new < self._c:
|
||||
b = b1_new
|
||||
if 0.0 < a2_new < self._c:
|
||||
b = b2_new
|
||||
if not (np.float64(0) < a2_new < self._c) and not (np.float64(0) < a1_new < self._c):
|
||||
b = (b1_new + b2_new) / 2.0
|
||||
b_old = self._b
|
||||
self._b = b
|
||||
|
||||
# 4: update error value,here we only calculate those non-bound samples' error
|
||||
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
||||
for s in self.unbound:
|
||||
if s == i1 or s == i2:
|
||||
continue
|
||||
self._error[s] += y1 * (a1_new - a1) * K(i1, s) + y2 * (a2_new - a2) * K(i2, s) + (self._b - b_old)
|
||||
|
||||
# if i1 or i2 is non-bound,update there error value to zero
|
||||
if self._is_unbound(i1):
|
||||
self._error[i1] = 0
|
||||
if self._is_unbound(i2):
|
||||
self._error[i2] = 0
|
||||
|
||||
# Predict test samles
|
||||
def predict(self, test_samples, classify=True):
|
||||
|
||||
if test_samples.shape[1] > self.samples.shape[1]:
|
||||
raise ValueError("Test samples' feature length does not equal to that of train samples")
|
||||
|
||||
if self._auto_norm:
|
||||
test_samples = self._norm(test_samples)
|
||||
|
||||
results = []
|
||||
for test_sample in test_samples:
|
||||
result = self._predict(test_sample)
|
||||
if classify:
|
||||
results.append(1 if result > 0 else -1)
|
||||
else:
|
||||
results.append(result)
|
||||
return np.array(results)
|
||||
|
||||
# Check if alpha violate KKT condition
|
||||
def _check_obey_kkt(self, index):
|
||||
alphas = self.alphas
|
||||
tol = self._tol
|
||||
r = self._e(index) * self.tags[index]
|
||||
c = self._c
|
||||
|
||||
return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
|
||||
|
||||
# Get value calculated from kernel function
|
||||
def _k(self, i1, i2):
|
||||
# for test samples,use Kernel function
|
||||
if isinstance(i2, np.ndarray):
|
||||
return self.Kernel(self.samples[i1], i2)
|
||||
# for train samples,Kernel values have been saved in matrix
|
||||
else:
|
||||
return self._K_matrix[i1, i2]
|
||||
|
||||
# Get sample's error
|
||||
def _e(self, index):
|
||||
"""
|
||||
Two cases:
|
||||
1:Sample[index] is non-bound,Fetch error from list: _error
|
||||
2:sample[index] is bound,Use predicted value deduct true value: g(xi) - yi
|
||||
|
||||
"""
|
||||
# get from error data
|
||||
if self._is_unbound(index):
|
||||
return self._error[index]
|
||||
# get by g(xi) - yi
|
||||
else:
|
||||
gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
|
||||
yi = self.tags[index]
|
||||
return gx - yi
|
||||
|
||||
# Calculate Kernel matrix of all possible i1,i2 ,saving time
|
||||
def _calculate_k_matrix(self):
|
||||
k_matrix = np.zeros([self.length, self.length])
|
||||
for i in self._all_samples:
|
||||
for j in self._all_samples:
|
||||
k_matrix[i, j] = np.float64(self.Kernel(self.samples[i, :], self.samples[j, :]))
|
||||
return k_matrix
|
||||
|
||||
# Predict test sample's tag
|
||||
def _predict(self, sample):
|
||||
k = self._k
|
||||
predicted_value = np.sum(
|
||||
[self.alphas[i1] * self.tags[i1] * k(i1, sample) for i1 in self._all_samples]) + self._b
|
||||
return predicted_value
|
||||
|
||||
# Choose alpha1 and alpha2
|
||||
def _choose_alphas(self):
|
||||
locis = yield from self._choose_a1()
|
||||
if not locis:
|
||||
return
|
||||
return locis
|
||||
|
||||
def _choose_a1(self):
|
||||
"""
|
||||
Choose first alpha ;steps:
|
||||
1:Fisrt loop over all sample
|
||||
2:Second loop over all non-bound samples till all non-bound samples does not voilate kkt condition.
|
||||
3:Repeat this two process endlessly,till all samples does not voilate kkt condition samples after first loop.
|
||||
"""
|
||||
while True:
|
||||
all_not_obey = True
|
||||
# all sample
|
||||
print('scanning all sample!')
|
||||
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
|
||||
all_not_obey = False
|
||||
yield from self._choose_a2(i1)
|
||||
|
||||
# non-bound sample
|
||||
print('scanning non-bound sample!')
|
||||
while True:
|
||||
not_obey = True
|
||||
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i) and self._is_unbound(i)]:
|
||||
not_obey = False
|
||||
yield from self._choose_a2(i1)
|
||||
if not_obey:
|
||||
print('all non-bound samples fit the KKT condition!')
|
||||
break
|
||||
if all_not_obey:
|
||||
print('all samples fit the KKT condition! Optimization done!')
|
||||
break
|
||||
return False
|
||||
|
||||
def _choose_a2(self, i1):
|
||||
"""
|
||||
Choose the second alpha by using heuristic algorithm ;steps:
|
||||
1:Choosed alpha2 which get the maximum step size (|E1 - E2|).
|
||||
2:Start in a random point,loop over all non-bound samples till alpha1 and alpha2 are optimized.
|
||||
3:Start in a random point,loop over all samples till alpha1 and alpha2 are optimized.
|
||||
"""
|
||||
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
||||
|
||||
if len(self.unbound) > 0:
|
||||
tmp_error = self._error.copy().tolist()
|
||||
tmp_error_dict = {index: value for index, value in enumerate(tmp_error) if self._is_unbound(index)}
|
||||
if self._e(i1) >= 0:
|
||||
i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
|
||||
else:
|
||||
i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
|
||||
cmd = yield i1, i2
|
||||
if cmd is None:
|
||||
return
|
||||
|
||||
for i2 in np.roll(self.unbound, np.random.choice(self.length)):
|
||||
cmd = yield i1, i2
|
||||
if cmd is None:
|
||||
return
|
||||
|
||||
for i2 in np.roll(self._all_samples, np.random.choice(self.length)):
|
||||
cmd = yield i1, i2
|
||||
if cmd is None:
|
||||
return
|
||||
|
||||
# Get the new alpha2 and new alpha1
|
||||
def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
|
||||
K = self._k
|
||||
if i1 == i2:
|
||||
return None, None
|
||||
|
||||
# calculate L and H which bound the new alpha2
|
||||
s = y1 * y2
|
||||
if s == -1:
|
||||
L, H = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1)
|
||||
else:
|
||||
L, H = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1)
|
||||
if L == H:
|
||||
return None, None
|
||||
|
||||
# calculate eta
|
||||
k11 = K(i1, i1)
|
||||
k22 = K(i2, i2)
|
||||
k12 = K(i1, i2)
|
||||
eta = k11 + k22 - 2.0 * k12
|
||||
|
||||
# select the new alpha2 which could get the minimal objectives
|
||||
if eta > 0.0:
|
||||
a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
|
||||
# a2_new has a boundry
|
||||
if a2_new_unc >= H:
|
||||
a2_new = H
|
||||
elif a2_new_unc <= L:
|
||||
a2_new = L
|
||||
else:
|
||||
a2_new = a2_new_unc
|
||||
else:
|
||||
b = self._b
|
||||
l1 = a1 + s * (a2 - L)
|
||||
h1 = a1 + s * (a2 - H)
|
||||
|
||||
# way 1
|
||||
f1 = y1 * (e1 + b) - a1 * K(i1, i1) - s * a2 * K(i1, i2)
|
||||
f2 = y2 * (e2 + b) - a2 * K(i2, i2) - s * a1 * K(i1, i2)
|
||||
ol = l1 * f1 + L * f2 + 1 / 2 * l1 ** 2 * K(i1, i1) + 1 / 2 * L ** 2 * K(i2, i2) + s * L * l1 * K(i1, i2)
|
||||
oh = h1 * f1 + H * f2 + 1 / 2 * h1 ** 2 * K(i1, i1) + 1 / 2 * H ** 2 * K(i2, i2) + s * H * h1 * K(i1, i2)
|
||||
"""
|
||||
# way 2
|
||||
Use objective function check which alpha2 new could get the minimal objectives
|
||||
|
||||
"""
|
||||
if ol < (oh - self._eps):
|
||||
a2_new = L
|
||||
elif ol > oh + self._eps:
|
||||
a2_new = H
|
||||
else:
|
||||
a2_new = a2
|
||||
|
||||
# a1_new has a boundry too
|
||||
a1_new = a1 + s * (a2 - a2_new)
|
||||
if a1_new < 0:
|
||||
a2_new += s * a1_new
|
||||
a1_new = 0
|
||||
if a1_new > self._c:
|
||||
a2_new += s * (a1_new - self._c)
|
||||
a1_new = self._c
|
||||
|
||||
return a1_new, a2_new
|
||||
|
||||
# Normalise data using min_max way
|
||||
def _norm(self, data):
|
||||
if self._init:
|
||||
self._min = np.min(data, axis=0)
|
||||
self._max = np.max(data, axis=0)
|
||||
self._init = False
|
||||
return (data - self._min) / (self._max - self._min)
|
||||
else:
|
||||
return (data - self._min) / (self._max - self._min)
|
||||
|
||||
def _is_unbound(self, index):
|
||||
if 0.0 < self.alphas[index] < self._c:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def _is_support(self, index):
|
||||
if self.alphas[index] > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@property
|
||||
def unbound(self):
|
||||
return self._unbound
|
||||
|
||||
@property
|
||||
def support(self):
|
||||
return [i for i in range(self.length) if self._is_support(i)]
|
||||
|
||||
@property
|
||||
def length(self):
|
||||
return self.samples.shape[0]
|
||||
|
||||
|
||||
class Kernel(object):
|
||||
def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
|
||||
self.degree = np.float64(degree)
|
||||
self.coef0 = np.float64(coef0)
|
||||
self.gamma = np.float64(gamma)
|
||||
self._kernel_name = kernel
|
||||
self._kernel = self._get_kernel(kernel_name=kernel)
|
||||
self._check()
|
||||
|
||||
def _polynomial(self, v1, v2):
|
||||
return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
|
||||
|
||||
def _linear(self, v1, v2):
|
||||
return np.inner(v1, v2) + self.coef0
|
||||
|
||||
def _rbf(self, v1, v2):
|
||||
return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
|
||||
|
||||
def _check(self):
|
||||
if self._kernel == self._rbf:
|
||||
if self.gamma < 0:
|
||||
raise ValueError('gamma value must greater than 0')
|
||||
|
||||
def _get_kernel(self, kernel_name):
|
||||
maps = {
|
||||
'linear': self._linear,
|
||||
'poly': self._polynomial,
|
||||
'rbf': self._rbf
|
||||
}
|
||||
return maps[kernel_name]
|
||||
|
||||
def __call__(self, v1, v2):
|
||||
return self._kernel(v1, v2)
|
||||
|
||||
def __repr__(self):
|
||||
return self._kernel_name
|
||||
|
||||
|
||||
def count_time(func):
|
||||
def call_func(*args, **kwargs):
|
||||
import time
|
||||
start_time = time.time()
|
||||
func(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
print('smo algorithm cost {} seconds'.format(end_time - start_time))
|
||||
|
||||
return call_func
|
||||
|
||||
|
||||
@count_time
|
||||
def test_cancel_data():
|
||||
print('Hello!\r\nStart test svm by smo algorithm!')
|
||||
# 0: download dataset and load into pandas' dataframe
|
||||
if not os.path.exists(r'cancel_data.csv'):
|
||||
request = urllib.request.Request(
|
||||
CANCER_DATASET_URL,
|
||||
headers={'User-Agent': 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'}
|
||||
)
|
||||
response = urllib.request.urlopen(request)
|
||||
content = response.read().decode('utf-8')
|
||||
with open(r'cancel_data.csv', 'w') as f:
|
||||
f.write(content)
|
||||
|
||||
data = pd.read_csv(r'cancel_data.csv', header=None)
|
||||
|
||||
# 1: pre-processing data
|
||||
del data[data.columns.tolist()[0]]
|
||||
data = data.dropna(axis=0)
|
||||
data = data.replace({'M': np.float64(1), 'B': np.float64(-1)})
|
||||
samples = np.array(data)[:, :]
|
||||
|
||||
# 2: deviding data into train_data data and test_data data
|
||||
train_data, test_data = samples[:328, :], samples[328:, :]
|
||||
test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
|
||||
|
||||
# 3: choose kernel function,and set initial alphas to zero(optional)
|
||||
mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5)
|
||||
al = np.zeros(train_data.shape[0])
|
||||
|
||||
# 4: calculating best alphas using SMO algorithm and predict test_data samples
|
||||
mysvm = SmoSVM(train=train_data, kernel_func=mykernel, alpha_list=al, cost=0.4, b=0.0, tolerance=0.001)
|
||||
mysvm.fit()
|
||||
predict = mysvm.predict(test_samples)
|
||||
|
||||
# 5: check accuracy
|
||||
score = 0
|
||||
test_num = test_tags.shape[0]
|
||||
for i in range(test_tags.shape[0]):
|
||||
if test_tags[i] == predict[i]:
|
||||
score += 1
|
||||
print('\r\nall: {}\r\nright: {}\r\nfalse: {}'.format(test_num, score, test_num - score))
|
||||
print("Rough Accuracy: {}".format(score / test_tags.shape[0]))
|
||||
|
||||
|
||||
def test_demonstration():
|
||||
# change stdout
|
||||
print('\r\nStart plot,please wait!!!')
|
||||
sys.stdout = open(os.devnull, 'w')
|
||||
|
||||
ax1 = plt.subplot2grid((2, 2), (0, 0))
|
||||
ax2 = plt.subplot2grid((2, 2), (0, 1))
|
||||
ax3 = plt.subplot2grid((2, 2), (1, 0))
|
||||
ax4 = plt.subplot2grid((2, 2), (1, 1))
|
||||
ax1.set_title("linear svm,cost:0.1")
|
||||
test_linear_kernel(ax1, cost=0.1)
|
||||
ax2.set_title("linear svm,cost:500")
|
||||
test_linear_kernel(ax2, cost=500)
|
||||
ax3.set_title("rbf kernel svm,cost:0.1")
|
||||
test_rbf_kernel(ax3, cost=0.1)
|
||||
ax4.set_title("rbf kernel svm,cost:500")
|
||||
test_rbf_kernel(ax4, cost=500)
|
||||
|
||||
sys.stdout = sys.__stdout__
|
||||
print("Plot done!!!")
|
||||
|
||||
def test_linear_kernel(ax, cost):
|
||||
train_x, train_y = make_blobs(n_samples=500, centers=2,
|
||||
n_features=2, random_state=1)
|
||||
train_y[train_y == 0] = -1
|
||||
scaler = StandardScaler()
|
||||
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
||||
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
||||
mykernel = Kernel(kernel='linear', degree=5, coef0=1, gamma=0.5)
|
||||
mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False)
|
||||
mysvm.fit()
|
||||
plot_partition_boundary(mysvm, train_data, ax=ax)
|
||||
|
||||
|
||||
def test_rbf_kernel(ax, cost):
|
||||
train_x, train_y = make_circles(n_samples=500, noise=0.1, factor=0.1, random_state=1)
|
||||
train_y[train_y == 0] = -1
|
||||
scaler = StandardScaler()
|
||||
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
||||
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
||||
mykernel = Kernel(kernel='rbf', degree=5, coef0=1, gamma=0.5)
|
||||
mysvm = SmoSVM(train=train_data, kernel_func=mykernel, cost=cost, tolerance=0.001, auto_norm=False)
|
||||
mysvm.fit()
|
||||
plot_partition_boundary(mysvm, train_data, ax=ax)
|
||||
|
||||
|
||||
def plot_partition_boundary(model, train_data, ax, resolution=100, colors=('b', 'k', 'r')):
|
||||
"""
|
||||
We can not get the optimum w of our kernel svm model which is different from linear svm.
|
||||
For this reason, we generate randomly destributed points with high desity and prediced values of these points are
|
||||
calculated by using our tained model. Then we could use this prediced values to draw contour map.
|
||||
And this contour map can represent svm's partition boundary.
|
||||
|
||||
"""
|
||||
train_data_x = train_data[:, 1]
|
||||
train_data_y = train_data[:, 2]
|
||||
train_data_tags = train_data[:, 0]
|
||||
xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
|
||||
yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
|
||||
test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(resolution * resolution, 2)
|
||||
|
||||
test_tags = model.predict(test_samples, classify=False)
|
||||
grid = test_tags.reshape((len(xrange), len(yrange)))
|
||||
|
||||
# Plot contour map which represents the partition boundary
|
||||
ax.contour(xrange, yrange, np.mat(grid).T, levels=(-1, 0, 1), linestyles=('--', '-', '--'),
|
||||
linewidths=(1, 1, 1),
|
||||
colors=colors)
|
||||
# Plot all train samples
|
||||
ax.scatter(train_data_x, train_data_y, c=train_data_tags, cmap=plt.cm.Dark2, lw=0, alpha=0.5)
|
||||
|
||||
# Plot support vectors
|
||||
support = model.support
|
||||
ax.scatter(train_data_x[support], train_data_y[support], c=train_data_tags[support], cmap=plt.cm.Dark2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cancel_data()
|
||||
test_demonstration()
|
||||
plt.show()
|
||||
|
Loading…
Reference in New Issue
Block a user