Added Germain primes algorithm to the maths folder (#10120)

* Added algorithm for Germain Primes to maths folder

* Fixed test errors Germain primes.

* Formatting Germain primes after pre-commit

* Fixed path to maths

* Update maths/germain_primes.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* Update maths/germain_primes.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* Added function for safe primes

* Update maths/germain_primes.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: Megan Payne <payneconsulting.nl@gmail.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
Megan Payne 2023-10-08 23:33:50 +02:00 committed by GitHub
parent 66e4ea6a62
commit a2b695dabd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

72
maths/germain_primes.py Normal file
View File

@ -0,0 +1,72 @@
"""
A Sophie Germain prime is any prime p, where 2p + 1 is also prime.
The second number, 2p + 1 is called a safe prime.
Examples of Germain primes include: 2, 3, 5, 11, 23
Their corresponding safe primes: 5, 7, 11, 23, 47
https://en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes
"""
from maths.prime_check import is_prime
def is_germain_prime(number: int) -> bool:
"""Checks if input number and 2*number + 1 are prime.
>>> is_germain_prime(3)
True
>>> is_germain_prime(11)
True
>>> is_germain_prime(4)
False
>>> is_germain_prime(23)
True
>>> is_germain_prime(13)
False
>>> is_germain_prime(20)
False
>>> is_germain_prime('abc')
Traceback (most recent call last):
...
TypeError: Input value must be a positive integer. Input value: abc
"""
if not isinstance(number, int) or number < 1:
msg = f"Input value must be a positive integer. Input value: {number}"
raise TypeError(msg)
return is_prime(number) and is_prime(2 * number + 1)
def is_safe_prime(number: int) -> bool:
"""Checks if input number and (number - 1)/2 are prime.
The smallest safe prime is 5, with the Germain prime is 2.
>>> is_safe_prime(5)
True
>>> is_safe_prime(11)
True
>>> is_safe_prime(1)
False
>>> is_safe_prime(2)
False
>>> is_safe_prime(3)
False
>>> is_safe_prime(47)
True
>>> is_safe_prime('abc')
Traceback (most recent call last):
...
TypeError: Input value must be a positive integer. Input value: abc
"""
if not isinstance(number, int) or number < 1:
msg = f"Input value must be a positive integer. Input value: {number}"
raise TypeError(msg)
return (number - 1) % 2 == 0 and is_prime(number) and is_prime((number - 1) // 2)
if __name__ == "__main__":
from doctest import testmod
testmod()