mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 13:31:07 +00:00
Merge pull request #277 from girijamanojkumarreddy/master
Added a Solution using Euclidean Algo
This commit is contained in:
commit
a2e615e6f8
20
Project Euler/Problem 05/sol2.py
Normal file
20
Project Euler/Problem 05/sol2.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
#!/bin/python3
|
||||
'''
|
||||
Problem:
|
||||
2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
||||
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
|
||||
'''
|
||||
|
||||
""" Euclidean GCD Algorithm """
|
||||
def gcd(x,y):
|
||||
return x if y==0 else gcd(y,x%y)
|
||||
|
||||
""" Using the property lcm*gcd of two numbers = product of them """
|
||||
def lcm(x,y):
|
||||
return (x*y)//gcd(x,y)
|
||||
|
||||
n = int(input())
|
||||
g=1
|
||||
for i in range(1,n+1):
|
||||
g=lcm(g,i)
|
||||
print(g)
|
19
Project Euler/Problem 9/sol2.py
Normal file
19
Project Euler/Problem 9/sol2.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
"""A Pythagorean triplet is a set of three natural numbers, for which,
|
||||
a^2+b^2=c^2
|
||||
Given N, Check if there exists any Pythagorean triplet for which a+b+c=N
|
||||
Find maximum possible value of product of a,b,c among all such Pythagorean triplets, If there is no such Pythagorean triplet print -1."""
|
||||
#!/bin/python3
|
||||
import sys
|
||||
|
||||
product=-1
|
||||
d=0
|
||||
N = int(input())
|
||||
for a in range(1,N//3):
|
||||
"""Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c """
|
||||
b=(N*N-2*a*N)//(2*N-2*a)
|
||||
c=N-a-b
|
||||
if c*c==(a*a+b*b):
|
||||
d=(a*b*c)
|
||||
if d>=product:
|
||||
product=d
|
||||
print(product)
|
Loading…
Reference in New Issue
Block a user