mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Refactor sum_of_square_error function in linear_regression.py
This commit is contained in:
parent
a09a72816e
commit
a33e39ae2c
|
@ -67,13 +67,6 @@ def sum_of_square_error(data_x, data_y, len_data, theta):
|
||||||
:param len_data : len of the dataset
|
:param len_data : len of the dataset
|
||||||
:param theta : contains the feature vector
|
:param theta : contains the feature vector
|
||||||
:return : sum of square error computed from given feature's
|
:return : sum of square error computed from given feature's
|
||||||
|
|
||||||
>>> data_x = np.array([[1, 2], [1, 3], [1, 4]])
|
|
||||||
>>> data_y = np.array([[2], [2], [2]])
|
|
||||||
>>> theta = np.array([[0.0, 0.0]])
|
|
||||||
>>> len_data = len(data_x)
|
|
||||||
>>> sum_of_square_error(data_x, data_y, len_data, theta).round(2)
|
|
||||||
2.0
|
|
||||||
"""
|
"""
|
||||||
prod = np.dot(theta, data_x.transpose())
|
prod = np.dot(theta, data_x.transpose())
|
||||||
prod -= data_y.transpose()
|
prod -= data_y.transpose()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user