random_normaldistribution_quicksort

This is for creating an algorithm implementing QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array and the array elements are taken from a Standard Normal Distribution.

This is different from the ordinary quicksort in the sense, that it applies more to real life problems , where elements usually follow a normal distribution. Also the pivot is randomized to make it a more generic one.
This commit is contained in:
Prateek Chanda 2017-02-03 22:02:05 +05:30 committed by GitHub
parent d68666ddba
commit a3ab980816

View File

@ -0,0 +1,66 @@
from random import randint
from tempfile import TemporaryFile
import numpy as np
import math
def _inPlaceQuickSort(A,start,end):
count = 0
if start<end:
pivot=randint(start,end)
temp=A[end]
A[end]=A[pivot]
A[pivot]=temp
p,count= _inPlacePartition(A,start,end)
count += _inPlaceQuickSort(A,start,p-1)
count += _inPlaceQuickSort(A,p+1,end)
return count
def _inPlacePartition(A,start,end):
count = 0
pivot= randint(start,end)
temp=A[end]
A[end]=A[pivot]
A[pivot]=temp
newPivotIndex=start-1
for index in range(start,end):
count += 1
if A[index]<A[end]:#check if current val is less than pivot value
newPivotIndex=newPivotIndex+1
temp=A[newPivotIndex]
A[newPivotIndex]=A[index]
A[index]=temp
temp=A[newPivotIndex+1]
A[newPivotIndex+1]=A[end]
A[end]=temp
return newPivotIndex+1,count
outfile = TemporaryFile()
p = 100 # 1000 elements are to be sorted
mu, sigma = 0, 1 # mean and standard deviation
X = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
M = np.load(outfile)
r = (len(M)-1)
z = _inPlaceQuickSort(M,0,r)
print("No of Comparisons for 100 elements selected from a standard normal distribution is :")
print(z)