mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Create superdense_coding.py (#7349)
* Create superdense_coding.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
a3383ce3fd
commit
a5362799a5
102
quantum/superdense_coding.py
Normal file
102
quantum/superdense_coding.py
Normal file
|
@ -0,0 +1,102 @@
|
|||
"""
|
||||
Build the superdense coding protocol. This quantum
|
||||
circuit can send two classical bits using one quantum
|
||||
bit. This circuit is designed using the Qiskit
|
||||
framework. This experiment run in IBM Q simulator
|
||||
with 1000 shots.
|
||||
.
|
||||
References:
|
||||
https://qiskit.org/textbook/ch-algorithms/superdense-coding.html
|
||||
https://en.wikipedia.org/wiki/Superdense_coding
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import qiskit
|
||||
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
|
||||
|
||||
|
||||
def superdense_coding(bit_1: int = 1, bit_2: int = 1) -> qiskit.result.counts.Counts:
|
||||
"""
|
||||
The input refer to the classical message
|
||||
that you wants to send. {'00','01','10','11'}
|
||||
result for default values: {11: 1000}
|
||||
┌───┐ ┌───┐
|
||||
qr_0: ─────┤ X ├──────────┤ X ├─────
|
||||
┌───┐└─┬─┘┌───┐┌───┐└─┬─┘┌───┐
|
||||
qr_1: ┤ H ├──■──┤ X ├┤ Z ├──■──┤ H ├
|
||||
└───┘ └───┘└───┘ └───┘
|
||||
cr: 2/══════════════════════════════
|
||||
Args:
|
||||
bit_1: bit 1 of classical information to send.
|
||||
bit_2: bit 2 of classical information to send.
|
||||
Returns:
|
||||
qiskit.result.counts.Counts: counts of send state.
|
||||
>>> superdense_coding(0,0)
|
||||
{'00': 1000}
|
||||
>>> superdense_coding(0,1)
|
||||
{'01': 1000}
|
||||
>>> superdense_coding(-1,0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: inputs must be positive.
|
||||
>>> superdense_coding(1,'j')
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: inputs must be integers.
|
||||
>>> superdense_coding(1,0.5)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: inputs must be exact integers.
|
||||
>>> superdense_coding(2,1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: inputs must be less or equal to 1.
|
||||
"""
|
||||
if (type(bit_1) == str) or (type(bit_2) == str):
|
||||
raise TypeError("inputs must be integers.")
|
||||
if (bit_1 < 0) or (bit_2 < 0):
|
||||
raise ValueError("inputs must be positive.")
|
||||
if (math.floor(bit_1) != bit_1) or (math.floor(bit_2) != bit_2):
|
||||
raise ValueError("inputs must be exact integers.")
|
||||
if (bit_1 > 1) or (bit_2 > 1):
|
||||
raise ValueError("inputs must be less or equal to 1.")
|
||||
|
||||
# build registers
|
||||
qr = QuantumRegister(2, "qr")
|
||||
cr = ClassicalRegister(2, "cr")
|
||||
|
||||
quantum_circuit = QuantumCircuit(qr, cr)
|
||||
|
||||
# entanglement the qubits
|
||||
quantum_circuit.h(1)
|
||||
quantum_circuit.cx(1, 0)
|
||||
|
||||
# send the information
|
||||
c_information = str(bit_1) + str(bit_2)
|
||||
|
||||
if c_information == "11":
|
||||
quantum_circuit.x(1)
|
||||
quantum_circuit.z(1)
|
||||
elif c_information == "10":
|
||||
quantum_circuit.z(1)
|
||||
elif c_information == "01":
|
||||
quantum_circuit.x(1)
|
||||
else:
|
||||
quantum_circuit.i(1)
|
||||
|
||||
# unentangled the circuit
|
||||
quantum_circuit.cx(1, 0)
|
||||
quantum_circuit.h(1)
|
||||
|
||||
# measure the circuit
|
||||
quantum_circuit.measure(qr, cr)
|
||||
|
||||
backend = Aer.get_backend("qasm_simulator")
|
||||
job = execute(quantum_circuit, backend, shots=1000)
|
||||
|
||||
return job.result().get_counts(quantum_circuit)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"Counts for classical state send: {superdense_coding(1,1)}")
|
Loading…
Reference in New Issue
Block a user