mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
[Project Euler] Fix code style in Problem 55 (#2985)
* fix code style and update problem description with link Signed-off-by: joan.rosellr <joan.rosellr@gmail.com> * Update sol1.py Co-authored-by: Dhruv <dhruvmanila@gmail.com>
This commit is contained in:
parent
40db8c205f
commit
a698fa9a3f
|
@ -1,10 +1,15 @@
|
|||
"""
|
||||
Lychrel numbers
|
||||
Problem 55: https://projecteuler.net/problem=55
|
||||
|
||||
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.
|
||||
|
||||
Not all numbers produce palindromes so quickly. For example,
|
||||
349 + 943 = 1292,
|
||||
1292 + 2921 = 4213
|
||||
4213 + 3124 = 7337
|
||||
That is, 349 took three iterations to arrive at a palindrome.
|
||||
|
||||
Although no one has proved it yet, it is thought that some numbers, like 196,
|
||||
never produce a palindrome. A number that never forms a palindrome through the
|
||||
reverse and add process is called a Lychrel number. Due to the theoretical nature
|
||||
|
@ -48,14 +53,14 @@ def sum_reverse(n: int) -> int:
|
|||
return int(n) + int(str(n)[::-1])
|
||||
|
||||
|
||||
def compute_lychrel_nums(limit: int) -> int:
|
||||
def solution(limit: int = 10000) -> int:
|
||||
"""
|
||||
Returns the count of all lychrel numbers below limit.
|
||||
>>> compute_lychrel_nums(10000)
|
||||
>>> solution(10000)
|
||||
249
|
||||
>>> compute_lychrel_nums(5000)
|
||||
>>> solution(5000)
|
||||
76
|
||||
>>> compute_lychrel_nums(1000)
|
||||
>>> solution(1000)
|
||||
13
|
||||
"""
|
||||
lychrel_nums = []
|
||||
|
@ -73,4 +78,4 @@ def compute_lychrel_nums(limit: int) -> int:
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{compute_lychrel_nums(10000) = }")
|
||||
print(f"{solution() = }")
|
||||
|
|
Loading…
Reference in New Issue
Block a user