mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
fuzzy operations added (#1310)
* fuzzy operations added * fuzzy inference system added * unnecessary files removed * requirements added * Modified requirements for travis ci * Modified requirements for travis ci * Add scikit-fuzzy to requirements.txt
This commit is contained in:
parent
4590363806
commit
a7f3851939
100
fuzzy_logic/fuzzy_operations.py
Normal file
100
fuzzy_logic/fuzzy_operations.py
Normal file
|
@ -0,0 +1,100 @@
|
|||
"""README, Author - Jigyasa Gandhi(mailto:jigsgandhi97@gmail.com)
|
||||
Requirements:
|
||||
- scikit-fuzzy
|
||||
- numpy
|
||||
- matplotlib
|
||||
Python:
|
||||
- 3.5
|
||||
"""
|
||||
# Create universe of discourse in python using linspace ()
|
||||
import numpy as np
|
||||
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
|
||||
|
||||
# Create two fuzzy sets by defining any membership function (trapmf(), gbellmf(),gaussmf(), etc).
|
||||
import skfuzzy as fuzz
|
||||
abc1=[0,25,50]
|
||||
abc2=[25,50,75]
|
||||
young = fuzz.membership.trimf(X,abc1)
|
||||
middle_aged = fuzz.membership.trimf(X,abc2)
|
||||
|
||||
# Compute the different operations using inbuilt functions.
|
||||
one = np.ones(75)
|
||||
zero = np.zeros((75,))
|
||||
#1. Union = max(µA(x), µB(x))
|
||||
union = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
|
||||
#2. Intersection = min(µA(x), µB(x))
|
||||
intersection = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
|
||||
#3. Complement (A) = (1- min(µA(x))
|
||||
complement_a = fuzz.fuzzy_not(young)
|
||||
#4. Difference (A/B) = min(µA(x),(1- µB(x)))
|
||||
difference = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
|
||||
#5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
|
||||
alg_sum = young + middle_aged - (young*middle_aged)
|
||||
#6. Algebraic Product = (µA(x) * µB(x))
|
||||
alg_product = young*middle_aged
|
||||
#7. Bounded Sum = min[1,(µA(x), µB(x))]
|
||||
bdd_sum = fuzz.fuzzy_and(X, one, X, young+middle_aged)[1]
|
||||
#8. Bounded difference = min[0,(µA(x), µB(x))]
|
||||
bdd_difference = fuzz.fuzzy_or(X, zero, X, young-middle_aged)[1]
|
||||
|
||||
#max-min composition
|
||||
#max-product composition
|
||||
|
||||
|
||||
# Plot each set A, set B and each operation result using plot() and subplot().
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.figure()
|
||||
|
||||
plt.subplot(4,3,1)
|
||||
plt.plot(X,young)
|
||||
plt.title("Young")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,2)
|
||||
plt.plot(X,middle_aged)
|
||||
plt.title("Middle aged")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,3)
|
||||
plt.plot(X,union)
|
||||
plt.title("union")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,4)
|
||||
plt.plot(X,intersection)
|
||||
plt.title("intersection")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,5)
|
||||
plt.plot(X,complement_a)
|
||||
plt.title("complement_a")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,6)
|
||||
plt.plot(X,difference)
|
||||
plt.title("difference a/b")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,7)
|
||||
plt.plot(X,alg_sum)
|
||||
plt.title("alg_sum")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,8)
|
||||
plt.plot(X,alg_product)
|
||||
plt.title("alg_product")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,9)
|
||||
plt.plot(X,bdd_sum)
|
||||
plt.title("bdd_sum")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplot(4,3,10)
|
||||
plt.plot(X,bdd_difference)
|
||||
plt.title("bdd_difference")
|
||||
plt.grid(True)
|
||||
|
||||
plt.subplots_adjust(hspace = 0.5)
|
||||
plt.show()
|
|
@ -8,6 +8,7 @@ pandas
|
|||
pillow
|
||||
pytest
|
||||
requests
|
||||
scikit-fuzzy
|
||||
sklearn
|
||||
sympy
|
||||
tensorflow
|
||||
|
|
Loading…
Reference in New Issue
Block a user