mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Add a missing "genetic algorithm" folder with a basic algorithm inside (#2179)
* Add a basic genetic algorithm * Update basic_string.py * Improve comments and readability * Add url to wikipedia * Remove newline Co-authored-by: Christian Clauss <cclauss@me.com> * Sort import Co-authored-by: Christian Clauss <cclauss@me.com> * Apply suggestions from code review Co-authored-by: Christian Clauss <cclauss@me.com> * Improve Comments and readability * Update basic_string.py * Improve logic and efficiency * Add doctest * Update basic_string.py * Update basic_string.py * Update basic_string.py * Apply suggestions from code review Co-authored-by: Christian Clauss <cclauss@me.com> * Update basic_string.py * Update basic_string.py * Update basic_string.py Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: vinayak <itssvinayak@gmail.com>
This commit is contained in:
parent
728c0df355
commit
aa01114c27
174
genetic_algorithm/basic_string.py
Normal file
174
genetic_algorithm/basic_string.py
Normal file
|
@ -0,0 +1,174 @@
|
|||
"""
|
||||
Simple multithreaded algorithm to show how the 4 phases of a genetic algorithm works
|
||||
(Evaluation, Selection, Crossover and Mutation)
|
||||
https://en.wikipedia.org/wiki/Genetic_algorithm
|
||||
Author: D4rkia
|
||||
"""
|
||||
|
||||
import random
|
||||
from typing import List, Tuple
|
||||
|
||||
# Maximum size of the population. bigger could be faster but is more memory expensive
|
||||
N_POPULATION = 200
|
||||
# Number of elements selected in every generation for evolution the selection takes
|
||||
# place from the best to the worst of that generation must be smaller than N_POPULATION
|
||||
N_SELECTED = 50
|
||||
# Probability that an element of a generation can mutate changing one of its genes this
|
||||
# guarantees that all genes will be used during evolution
|
||||
MUTATION_PROBABILITY = 0.4
|
||||
# just a seed to improve randomness required by the algorithm
|
||||
random.seed(random.randint(0, 1000))
|
||||
|
||||
|
||||
def basic(target: str, genes: List[str], debug: bool = True) -> Tuple[int, int, str]:
|
||||
"""
|
||||
Verify that the target contains no genes besides the ones inside genes variable.
|
||||
|
||||
>>> from string import ascii_lowercase
|
||||
>>> basic("doctest", ascii_lowercase, debug=False)[2]
|
||||
'doctest'
|
||||
>>> genes = list(ascii_lowercase)
|
||||
>>> genes.remove("e")
|
||||
>>> basic("test", genes)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: ['e'] is not in genes list, evolution cannot converge
|
||||
>>> genes.remove("s")
|
||||
>>> basic("test", genes)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: ['e', 's'] is not in genes list, evolution cannot converge
|
||||
>>> genes.remove("t")
|
||||
>>> basic("test", genes)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: ['e', 's', 't'] is not in genes list, evolution cannot converge
|
||||
"""
|
||||
|
||||
# Verify if N_POPULATION is bigger than N_SELECTED
|
||||
if N_POPULATION < N_SELECTED:
|
||||
raise ValueError(f"{N_POPULATION} must be bigger than {N_SELECTED}")
|
||||
# Verify that the target contains no genes besides the ones inside genes variable.
|
||||
not_in_genes_list = sorted({c for c in target if c not in genes})
|
||||
if not_in_genes_list:
|
||||
raise ValueError(
|
||||
f"{not_in_genes_list} is not in genes list, evolution cannot converge"
|
||||
)
|
||||
|
||||
# Generate random starting population
|
||||
population = []
|
||||
for _ in range(N_POPULATION):
|
||||
population.append("".join([random.choice(genes) for i in range(len(target))]))
|
||||
|
||||
# Just some logs to know what the algorithms is doing
|
||||
generation, total_population = 0, 0
|
||||
|
||||
# This loop will end when we will find a perfect match for our target
|
||||
while True:
|
||||
generation += 1
|
||||
total_population += len(population)
|
||||
|
||||
# Random population created now it's time to evaluate
|
||||
def evaluate(item: str, main_target: str = target) -> Tuple[str, float]:
|
||||
"""
|
||||
Evaluate how similar the item is with the target by just
|
||||
counting each char in the right position
|
||||
>>> evaluate("Helxo Worlx", Hello World)
|
||||
["Helxo Worlx", 9]
|
||||
"""
|
||||
score = len(
|
||||
[g for position, g in enumerate(item) if g == main_target[position]]
|
||||
)
|
||||
return (item, float(score))
|
||||
|
||||
# Adding a bit of concurrency can make everything faster,
|
||||
#
|
||||
# import concurrent.futures
|
||||
# population_score: List[Tuple[str, float]] = []
|
||||
# with concurrent.futures.ThreadPoolExecutor(
|
||||
# max_workers=NUM_WORKERS) as executor:
|
||||
# futures = {executor.submit(evaluate, item) for item in population}
|
||||
# concurrent.futures.wait(futures)
|
||||
# population_score = [item.result() for item in futures]
|
||||
#
|
||||
# but with a simple algorithm like this will probably be slower
|
||||
# we just need to call evaluate for every item inside population
|
||||
population_score = [evaluate(item) for item in population]
|
||||
|
||||
# Check if there is a matching evolution
|
||||
population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
|
||||
if population_score[0][0] == target:
|
||||
return (generation, total_population, population_score[0][0])
|
||||
|
||||
# Print the Best result every 10 generation
|
||||
# just to know that the algorithm is working
|
||||
if debug and generation % 10 == 0:
|
||||
print(
|
||||
f"\nGeneration: {generation}"
|
||||
f"\nTotal Population:{total_population}"
|
||||
f"\nBest score: {population_score[0][1]}"
|
||||
f"\nBest string: {population_score[0][0]}"
|
||||
)
|
||||
|
||||
# Flush the old population keeping some of the best evolutions
|
||||
# Keeping this avoid regression of evolution
|
||||
population_best = population[: int(N_POPULATION / 3)]
|
||||
population.clear()
|
||||
population.extend(population_best)
|
||||
# Normalize population score from 0 to 1
|
||||
population_score = [
|
||||
(item, score / len(target)) for item, score in population_score
|
||||
]
|
||||
|
||||
# Select, Crossover and Mutate a new population
|
||||
def select(parent_1: Tuple[str, float]) -> List[str]:
|
||||
"""Select the second parent and generate new population"""
|
||||
pop = []
|
||||
# Generate more child proportionally to the fitness score
|
||||
child_n = int(parent_1[1] * 100) + 1
|
||||
child_n = 10 if child_n >= 10 else child_n
|
||||
for _ in range(child_n):
|
||||
parent_2 = population_score[random.randint(0, N_SELECTED)][0]
|
||||
child_1, child_2 = crossover(parent_1[0], parent_2)
|
||||
# Append new string to the population list
|
||||
pop.append(mutate(child_1))
|
||||
pop.append(mutate(child_2))
|
||||
return pop
|
||||
|
||||
def crossover(parent_1: str, parent_2: str) -> Tuple[str, str]:
|
||||
"""Slice and combine two string in a random point"""
|
||||
random_slice = random.randint(0, len(parent_1) - 1)
|
||||
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
|
||||
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
|
||||
return (child_1, child_2)
|
||||
|
||||
def mutate(child: str) -> str:
|
||||
"""Mutate a random gene of a child with another one from the list"""
|
||||
child_list = list(child)
|
||||
if random.uniform(0, 1) < MUTATION_PROBABILITY:
|
||||
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
|
||||
return "".join(child_list)
|
||||
|
||||
# This is Selection
|
||||
for i in range(N_SELECTED):
|
||||
population.extend(select(population_score[int(i)]))
|
||||
# Check if the population has already reached the maximum value and if so,
|
||||
# break the cycle. if this check is disabled the algorithm will take
|
||||
# forever to compute large strings but will also calculate small string in
|
||||
# a lot fewer generations
|
||||
if len(population) > N_POPULATION:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
target_str = (
|
||||
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
|
||||
)
|
||||
genes_list = list(
|
||||
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
|
||||
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
|
||||
)
|
||||
print(
|
||||
"\nGeneration: %s\nTotal Population: %s\nTarget: %s"
|
||||
% basic(target_str, genes_list)
|
||||
)
|
Loading…
Reference in New Issue
Block a user