mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Added Binary Focal Cross Entropy (#10674)
* Added Binary Focal Cross Entropy * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fixed Issue * Fixed Issue * Added BFCE loss to loss_functions.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update machine_learning/loss_functions.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
fdb0635c71
commit
abd6bca074
|
@ -39,6 +39,57 @@ def binary_cross_entropy(
|
||||||
return np.mean(bce_loss)
|
return np.mean(bce_loss)
|
||||||
|
|
||||||
|
|
||||||
|
def binary_focal_cross_entropy(
|
||||||
|
y_true: np.ndarray,
|
||||||
|
y_pred: np.ndarray,
|
||||||
|
gamma: float = 2.0,
|
||||||
|
alpha: float = 0.25,
|
||||||
|
epsilon: float = 1e-15,
|
||||||
|
) -> float:
|
||||||
|
"""
|
||||||
|
Calculate the mean binary focal cross-entropy (BFCE) loss between true labels
|
||||||
|
and predicted probabilities.
|
||||||
|
|
||||||
|
BFCE loss quantifies dissimilarity between true labels (0 or 1) and predicted
|
||||||
|
probabilities. It's a variation of binary cross-entropy that addresses class
|
||||||
|
imbalance by focusing on hard examples.
|
||||||
|
|
||||||
|
BCFE = -Σ(alpha * (1 - y_pred)**gamma * y_true * log(y_pred)
|
||||||
|
+ (1 - alpha) * y_pred**gamma * (1 - y_true) * log(1 - y_pred))
|
||||||
|
|
||||||
|
Reference: [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf)
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- y_true: True binary labels (0 or 1).
|
||||||
|
- y_pred: Predicted probabilities for class 1.
|
||||||
|
- gamma: Focusing parameter for modulating the loss (default: 2.0).
|
||||||
|
- alpha: Weighting factor for class 1 (default: 0.25).
|
||||||
|
- epsilon: Small constant to avoid numerical instability.
|
||||||
|
|
||||||
|
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||||
|
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
|
||||||
|
>>> binary_focal_cross_entropy(true_labels, predicted_probs)
|
||||||
|
0.008257977659239775
|
||||||
|
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||||
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||||
|
>>> binary_focal_cross_entropy(true_labels, predicted_probs)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
ValueError: Input arrays must have the same length.
|
||||||
|
"""
|
||||||
|
if len(y_true) != len(y_pred):
|
||||||
|
raise ValueError("Input arrays must have the same length.")
|
||||||
|
# Clip predicted probabilities to avoid log(0)
|
||||||
|
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
|
||||||
|
|
||||||
|
bcfe_loss = -(
|
||||||
|
alpha * (1 - y_pred) ** gamma * y_true * np.log(y_pred)
|
||||||
|
+ (1 - alpha) * y_pred**gamma * (1 - y_true) * np.log(1 - y_pred)
|
||||||
|
)
|
||||||
|
|
||||||
|
return np.mean(bcfe_loss)
|
||||||
|
|
||||||
|
|
||||||
def categorical_cross_entropy(
|
def categorical_cross_entropy(
|
||||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||||
) -> float:
|
) -> float:
|
||||||
|
|
Loading…
Reference in New Issue
Block a user