Add Project Euler problem 131 solution 1 (#8179)

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Maxim Smolskiy 2023-03-15 15:56:03 +03:00 committed by GitHub
parent 47b3c72982
commit adc3ccdabe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 61 additions and 0 deletions

View File

@ -196,11 +196,14 @@
* [Disjoint Set](data_structures/disjoint_set/disjoint_set.py) * [Disjoint Set](data_structures/disjoint_set/disjoint_set.py)
* Hashing * Hashing
* [Double Hash](data_structures/hashing/double_hash.py) * [Double Hash](data_structures/hashing/double_hash.py)
* [Hash Map](data_structures/hashing/hash_map.py)
* [Hash Table](data_structures/hashing/hash_table.py) * [Hash Table](data_structures/hashing/hash_table.py)
* [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py) * [Hash Table With Linked List](data_structures/hashing/hash_table_with_linked_list.py)
* Number Theory * Number Theory
* [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py) * [Prime Numbers](data_structures/hashing/number_theory/prime_numbers.py)
* [Quadratic Probing](data_structures/hashing/quadratic_probing.py) * [Quadratic Probing](data_structures/hashing/quadratic_probing.py)
* Tests
* [Test Hash Map](data_structures/hashing/tests/test_hash_map.py)
* Heap * Heap
* [Binomial Heap](data_structures/heap/binomial_heap.py) * [Binomial Heap](data_structures/heap/binomial_heap.py)
* [Heap](data_structures/heap/heap.py) * [Heap](data_structures/heap/heap.py)
@ -973,6 +976,8 @@
* [Sol1](project_euler/problem_125/sol1.py) * [Sol1](project_euler/problem_125/sol1.py)
* Problem 129 * Problem 129
* [Sol1](project_euler/problem_129/sol1.py) * [Sol1](project_euler/problem_129/sol1.py)
* Problem 131
* [Sol1](project_euler/problem_131/sol1.py)
* Problem 135 * Problem 135
* [Sol1](project_euler/problem_135/sol1.py) * [Sol1](project_euler/problem_135/sol1.py)
* Problem 144 * Problem 144

View File

View File

@ -0,0 +1,56 @@
"""
Project Euler Problem 131: https://projecteuler.net/problem=131
There are some prime values, p, for which there exists a positive integer, n,
such that the expression n^3 + n^2p is a perfect cube.
For example, when p = 19, 8^3 + 8^2 x 19 = 12^3.
What is perhaps most surprising is that for each prime with this property
the value of n is unique, and there are only four such primes below one-hundred.
How many primes below one million have this remarkable property?
"""
from math import isqrt
def is_prime(number: int) -> bool:
"""
Determines whether number is prime
>>> is_prime(3)
True
>>> is_prime(4)
False
"""
for divisor in range(2, isqrt(number) + 1):
if number % divisor == 0:
return False
return True
def solution(max_prime: int = 10**6) -> int:
"""
Returns number of primes below max_prime with the property
>>> solution(100)
4
"""
primes_count = 0
cube_index = 1
prime_candidate = 7
while prime_candidate < max_prime:
primes_count += is_prime(prime_candidate)
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f"{solution() = }")