diff --git a/machine_learning/xgboost_regressor.py b/machine_learning/xgboost_regressor.py new file mode 100644 index 000000000..023984fc1 --- /dev/null +++ b/machine_learning/xgboost_regressor.py @@ -0,0 +1,64 @@ +# XGBoost Regressor Example +import numpy as np +from sklearn.datasets import fetch_california_housing +from sklearn.metrics import mean_absolute_error, mean_squared_error +from sklearn.model_selection import train_test_split +from xgboost import XGBRegressor + + +def data_handling(data: dict) -> tuple: + # Split dataset into features and target. Data is features. + """ + >>> data_handling(( + ... {'data':'[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]' + ... ,'target':([4.526])})) + ('[ 8.3252 41. 6.9841269 1.02380952 322. 2.55555556 37.88 -122.23 ]', [4.526]) + """ + return (data["data"], data["target"]) + + +def xgboost( + features: np.ndarray, target: np.ndarray, test_features: np.ndarray +) -> np.ndarray: + """ + >>> xgboost(np.array([[ 2.3571 , 52. , 6.00813008, 1.06775068, + ... 907. , 2.45799458, 40.58 , -124.26]]),np.array([1.114]), + ... np.array([[1.97840000e+00, 3.70000000e+01, 4.98858447e+00, 1.03881279e+00, + ... 1.14300000e+03, 2.60958904e+00, 3.67800000e+01, -1.19780000e+02]])) + array([[1.1139996]], dtype=float32) + """ + xgb = XGBRegressor(verbosity=0, random_state=42) + xgb.fit(features, target) + # Predict target for test data + predictions = xgb.predict(test_features) + predictions = predictions.reshape(len(predictions), 1) + return predictions + + +def main() -> None: + """ + >>> main() + Mean Absolute Error : 0.30957163379906033 + Mean Square Error : 0.22611560196662744 + + The URL for this algorithm + https://xgboost.readthedocs.io/en/stable/ + California house price dataset is used to demonstrate the algorithm. + """ + # Load California house price dataset + california = fetch_california_housing() + data, target = data_handling(california) + x_train, x_test, y_train, y_test = train_test_split( + data, target, test_size=0.25, random_state=1 + ) + predictions = xgboost(x_train, y_train, x_test) + # Error printing + print(f"Mean Absolute Error : {mean_absolute_error(y_test, predictions)}") + print(f"Mean Square Error : {mean_squared_error(y_test, predictions)}") + + +if __name__ == "__main__": + import doctest + + doctest.testmod(verbose=True) + main()