mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
ridge regression
This commit is contained in:
commit
b1353dddd4
|
@ -20,11 +20,13 @@ class RidgeRegression:
|
|||
X_scaled = (X - mean) / std
|
||||
return X_scaled, mean, std
|
||||
|
||||
|
||||
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
|
||||
X_scaled, mean, std = self.feature_scaling(X)
|
||||
m, n = X_scaled.shape
|
||||
self.theta = np.zeros(n) # initializing weights to zeros
|
||||
|
||||
|
||||
for i in range(self.num_iterations):
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
|
@ -35,12 +37,14 @@ class RidgeRegression:
|
|||
) / m
|
||||
self.theta -= self.alpha * gradient # updating weights
|
||||
|
||||
|
||||
def predict(self, X:np.ndarray) -> np.ndarray:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
return X_scaled.dot(self.theta)
|
||||
|
||||
|
||||
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
m = len(y)
|
||||
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
|
@ -49,6 +53,7 @@ class RidgeRegression:
|
|||
) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
|
||||
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
|
||||
return np.mean(np.abs(y_true - y_pred))
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user