Add Digital Image Processing Algorithm: Local Binary Pattern (#6294)

* add algorithm local binary pattern

* fix failed test for local binary pattern

* updating DIRECTORY.md

* fix detected precommit-error

* fix precommit error

* final check

* Add descriptive name for parameters  x and y

* Update digital_image_processing/filters/local_binary_pattern.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update digital_image_processing/filters/local_binary_pattern.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update digital_image_processing/filters/local_binary_pattern.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update local_binary_pattern.py

* undo changes made on get_neighbors_pixel()

* files formatted by black

* Update digital_image_processing/filters/local_binary_pattern.py

ok thanks

Co-authored-by: Christian Clauss <cclauss@me.com>

* add test for get_neighbors_pixel() function

* reviewed

* fix  get_neighbors_pixel

* Update test_digital_image_processing.py

* updating DIRECTORY.md

* Create code_quality.yml

* Create code_quality.yml

* Delete code_quality.yml

* Update code_quality.yml

* Delete code_quality.yml

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
zhexuanl 2022-08-24 12:48:54 +08:00 committed by GitHub
parent f31fa4ea7e
commit b1818af517
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 115 additions and 0 deletions

View File

@ -152,6 +152,7 @@
* [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py) * [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py)
* [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py) * [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py)
* [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py) * [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py)
* [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py)
* [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py) * [Merge Two Binary Trees](data_structures/binary_tree/merge_two_binary_trees.py)
* [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py) * [Non Recursive Segment Tree](data_structures/binary_tree/non_recursive_segment_tree.py)
* [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py) * [Number Of Possible Binary Trees](data_structures/binary_tree/number_of_possible_binary_trees.py)
@ -229,6 +230,7 @@
* [Convolve](digital_image_processing/filters/convolve.py) * [Convolve](digital_image_processing/filters/convolve.py)
* [Gabor Filter](digital_image_processing/filters/gabor_filter.py) * [Gabor Filter](digital_image_processing/filters/gabor_filter.py)
* [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py) * [Gaussian Filter](digital_image_processing/filters/gaussian_filter.py)
* [Local Binary Pattern](digital_image_processing/filters/local_binary_pattern.py)
* [Median Filter](digital_image_processing/filters/median_filter.py) * [Median Filter](digital_image_processing/filters/median_filter.py)
* [Sobel Filter](digital_image_processing/filters/sobel_filter.py) * [Sobel Filter](digital_image_processing/filters/sobel_filter.py)
* Histogram Equalization * Histogram Equalization

View File

@ -0,0 +1,81 @@
import cv2
import numpy as np
def get_neighbors_pixel(
image: np.ndarray, x_coordinate: int, y_coordinate: int, center: int
) -> int:
"""
Comparing local neighborhood pixel value with threshold value of centre pixel.
Exception is required when neighborhood value of a center pixel value is null.
i.e. values present at boundaries.
:param image: The image we're working with
:param x_coordinate: x-coordinate of the pixel
:param y_coordinate: The y coordinate of the pixel
:param center: center pixel value
:return: The value of the pixel is being returned.
"""
try:
return int(image[x_coordinate][y_coordinate] >= center)
except (IndexError, TypeError):
return 0
def local_binary_value(image: np.ndarray, x_coordinate: int, y_coordinate: int) -> int:
"""
It takes an image, an x and y coordinate, and returns the
decimal value of the local binary patternof the pixel
at that coordinate
:param image: the image to be processed
:param x_coordinate: x coordinate of the pixel
:param y_coordinate: the y coordinate of the pixel
:return: The decimal value of the binary value of the pixels
around the center pixel.
"""
center = image[x_coordinate][y_coordinate]
powers = [1, 2, 4, 8, 16, 32, 64, 128]
# skip get_neighbors_pixel if center is null
if center is None:
return 0
# Starting from the top right, assigning value to pixels clockwise
binary_values = [
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate - 1, center),
get_neighbors_pixel(image, x_coordinate, y_coordinate - 1, center),
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate - 1, center),
]
# Converting the binary value to decimal.
return sum(
binary_value * power for binary_value, power in zip(binary_values, powers)
)
if __name__ == "main":
# Reading the image and converting it to grayscale.
image = cv2.imread(
"digital_image_processing/image_data/lena.jpg", cv2.IMREAD_GRAYSCALE
)
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the
# local binary pattern value for each pixel.
for i in range(0, image.shape[0]):
for j in range(0, image.shape[1]):
lbp_image[i][j] = local_binary_value(image, i, j)
cv2.imshow("local binary pattern", lbp_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

View File

@ -1,6 +1,7 @@
""" """
PyTest's for Digital Image Processing PyTest's for Digital Image Processing
""" """
import numpy as np
from cv2 import COLOR_BGR2GRAY, cvtColor, imread from cv2 import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uint8 from numpy import array, uint8
from PIL import Image from PIL import Image
@ -12,6 +13,7 @@ from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny as canny from digital_image_processing.edge_detection import canny as canny
from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs from digital_image_processing.resize import resize as rs
@ -91,3 +93,33 @@ def test_nearest_neighbour(
nn = rs.NearestNeighbour(imread(file_path, 1), 400, 200) nn = rs.NearestNeighbour(imread(file_path, 1), 400, 200)
nn.process() nn.process()
assert nn.output.any() assert nn.output.any()
def test_local_binary_pattern():
file_path: str = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
image = imread(file_path, 0)
# Test for get_neighbors_pixel function() return not None
x_coordinate = 0
y_coordinate = 0
center = image[x_coordinate][y_coordinate]
neighbors_pixels = lbp.get_neighbors_pixel(
image, x_coordinate, y_coordinate, center
)
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0, image.shape[0]):
for j in range(0, image.shape[1]):
lbp_image[i][j] = lbp.local_binary_value(image, i, j)
assert lbp_image.any()