mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Add pure implementation of K-Nearest Neighbours (#1278)
* Pure implementation of KNN added * Comments and test case added * doctest added
This commit is contained in:
parent
0a7d387acb
commit
b1a769cf44
55
machine_learning/k_nearest_neighbours.py
Normal file
55
machine_learning/k_nearest_neighbours.py
Normal file
|
@ -0,0 +1,55 @@
|
|||
import numpy as np
|
||||
from collections import Counter
|
||||
from sklearn import datasets
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
data = datasets.load_iris()
|
||||
|
||||
X = np.array(data['data'])
|
||||
y = np.array(data['target'])
|
||||
classes = data['target_names']
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y)
|
||||
|
||||
def euclidean_distance(a, b):
|
||||
"""
|
||||
Gives the euclidean distance between two points
|
||||
>>> euclidean_distance([0, 0], [3, 4])
|
||||
5.0
|
||||
>>> euclidean_distance([1, 2, 3], [1, 8, 11])
|
||||
10.0
|
||||
"""
|
||||
return np.linalg.norm(np.array(a) - np.array(b))
|
||||
|
||||
def classifier(train_data, train_target, classes, point, k=5):
|
||||
"""
|
||||
Classifies the point using the KNN algorithm
|
||||
k closest points are found (ranked in ascending order of euclidean distance)
|
||||
Params:
|
||||
:train_data: Set of points that are classified into two or more classes
|
||||
:train_target: List of classes in the order of train_data points
|
||||
:classes: Labels of the classes
|
||||
:point: The data point that needs to be classifed
|
||||
|
||||
>>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]]
|
||||
>>> y_train = [0, 0, 0, 0, 1, 1, 1]
|
||||
>>> classes = ['A','B']; point = [1.2,1.2]
|
||||
>>> classifier(X_train, y_train, classes,point)
|
||||
'A'
|
||||
"""
|
||||
data = zip(train_data, train_target)
|
||||
# List of distances of all points from the point to be classified
|
||||
distances = []
|
||||
for data_point in data:
|
||||
distance = euclidean_distance(data_point[0], point)
|
||||
distances.append((distance, data_point[1]))
|
||||
# Choosing 'k' points with the least distances.
|
||||
votes = [i[1] for i in sorted(distances)[:k]]
|
||||
# Most commonly occuring class among them
|
||||
# is the class into which the point is classified
|
||||
result = Counter(votes).most_common(1)[0][0]
|
||||
return classes[result]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
|
Loading…
Reference in New Issue
Block a user