Merge pull request #1 from TheAlgorithms/master

Getting New Changes
This commit is contained in:
Sohan Rudra 2017-10-24 12:57:09 +05:30 committed by GitHub
commit b2d165d5a4
55 changed files with 2551 additions and 366 deletions

View File

@ -1,14 +0,0 @@
language: python
python:
- "3.2"
- "3.3"
- "3.4"
- "3.5"
- "3.6"
- "3.6-dev"
install:
- if [ "$TRAVIS_PYTHON_VERSION" == "3.2" ]; then travis_retry pip install coverage==3.7.1; fi
- if [ "$TRAVIS_PYTHON_VERSION" != "3.2" ]; then travis_retry pip install coverage; fi
- "pip install pytest pytest-cov"
script: py.test --doctest-modules --cov ./

101
Graphs/A*.py Normal file
View File

@ -0,0 +1,101 @@
grid = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0]]
'''
heuristic = [[9, 8, 7, 6, 5, 4],
[8, 7, 6, 5, 4, 3],
[7, 6, 5, 4, 3, 2],
[6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1, 0]]'''
init = [0, 0]
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
cost = 1
#the cost map which pushes the path closer to the goal
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
heuristic[i][j] = 99 #added extra penalty in the heuristic map
#the actions we can take
delta = [[-1, 0 ], # go up
[ 0, -1], # go left
[ 1, 0 ], # go down
[ 0, 1 ]] # go right
#function to search the path
def search(grid,init,goal,cost,heuristic):
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
closed[init[0]][init[1]] = 1
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
x = init[0]
y = init[1]
g = 0
f = g + heuristic[init[0]][init[0]]
cell = [[f, g, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
while not found and not resign:
if len(cell) == 0:
resign = True
return "FAIL"
else:
cell.sort()#to choose the least costliest action so as to move closer to the goal
cell.reverse()
next = cell.pop()
x = next[2]
y = next[3]
g = next[1]
f = next[0]
if x == goal[0] and y == goal[1]:
found = True
else:
for i in range(len(delta)):#to try out different valid actions
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
f2 = g2 + heuristic[x2][y2]
cell.append([f2, g2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
invpath = []
x = goal[0]
y = goal[1]
invpath.append([x, y])#we get the reverse path from here
while x != init[0] or y != init[1]:
x2 = x - delta[action[x][y]][0]
y2 = y - delta[action[x][y]][1]
x = x2
y = y2
invpath.append([x, y])
path = []
for i in range(len(invpath)):
path.append(invpath[len(invpath) - 1 - i])
print "ACTION MAP"
for i in range(len(action)):
print action[i]
return path
a = search(grid,init,goal,cost,heuristic)
for i in range(len(a)):
print a[i]

View File

@ -1,70 +0,0 @@
class GRAPH:
"""docstring for GRAPH"""
def __init__(self, nodes):
self.nodes=nodes
self.graph=[[0]*nodes for i in range (nodes)]
self.visited=[0]*nodes
def show(self):
for i in self.graph:
for j in i:
print(j, end=' ')
print(' ')
def bfs(self,v):
visited = [False]*self.vertex
visited[v - 1] = True
print('%d visited' % (v))
queue = [v - 1]
while len(queue) > 0:
v = queue[0]
for u in range(self.vertex):
if self.graph[v][u] == 1:
if visited[u]== False:
visited[u] = True
queue.append(u)
print('%d visited' % (u +1))
queue.pop(0)
g = Graph(10)
g.add_edge(1,2)
g.add_edge(1,3)
g.add_edge(1,4)
g.add_edge(2,5)
g.add_edge(3,6)
g.add_edge(3,7)
g.add_edge(4,8)
g.add_edge(5,9)
g.add_edge(6,10)
g.bfs(4)
=======
print self.graph
def add_edge(self, i, j):
self.graph[i][j]=1
self.graph[j][i]=1
def bfs(self,s):
queue=[s]
self.visited[s]=1
while len(queue)!=0:
x=queue.pop(0)
print(x)
for i in range(0,self.nodes):
if self.graph[x][i]==1 and self.visited[i]==0:
queue.append(i)
self.visited[i]=1
n=int(input("Enter the number of Nodes : "))
g=GRAPH(n)
e=int(input("Enter the no of edges : "))
print("Enter the edges (u v)")
for i in range(0,e):
u,v=map(int, raw_input().split())
g.add_edge(u,v)
s=int(input("Enter the source node :"))
g.bfs(s)

View File

@ -1,32 +0,0 @@
class GRAPH:
"""docstring for GRAPH"""
def __init__(self, nodes):
self.nodes=nodes
self.graph=[[0]*nodes for i in range (nodes)]
self.visited=[0]*nodes
def show(self):
print self.graph
def add_edge(self, i, j):
self.graph[i][j]=1
self.graph[j][i]=1
def dfs(self,s):
self.visited[s]=1
print(s)
for i in range(0,self.nodes):
if self.visited[i]==0 and self.graph[s][i]==1:
self.dfs(i)
n=int(input("Enter the number of Nodes : "))
g=GRAPH(n)
e=int(input("Enter the no of edges : "))
print("Enter the edges (u v)")
for i in range(0,e):
u,v=map(int, raw_input().split())
g.add_edge(u,v)
s=int(input("Enter the source node :"))
g.dfs(s)

267
Graphs/basic-graphs.py Normal file
View File

@ -0,0 +1,267 @@
# Accept No. of Nodes and edges
n, m = map(int, raw_input().split(" "))
# Initialising Dictionary of edges
g = {}
for i in xrange(n):
g[i + 1] = []
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
g[y].append(x)
"""
--------------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y, r = map(int, raw_input().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
--------------------------------------------------------------------------------
Depth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
S - Traversal Stack
--------------------------------------------------------------------------------
"""
def dfs(G, s):
vis, S = set([s]), [s]
print s
while S:
flag = 0
for i in G[S[-1]]:
if i not in vis:
S.append(i)
vis.add(i)
flag = 1
print i
break
if not flag:
S.pop()
"""
--------------------------------------------------------------------------------
Breadth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
Q - Traveral Stack
--------------------------------------------------------------------------------
"""
from collections import deque
def bfs(G, s):
vis, Q = set([s]), deque([s])
print s
while Q:
u = Q.popleft()
for v in G[u]:
if v not in vis:
vis.add(v)
Q.append(v)
print v
"""
--------------------------------------------------------------------------------
Dijkstra's shortest path Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def dijk(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for i in dist:
if i != s:
print dist[i]
"""
--------------------------------------------------------------------------------
Topological Sort
--------------------------------------------------------------------------------
"""
from collections import deque
def topo(G, ind=None, Q=[1]):
if ind == None:
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
for u in G:
for v in G[u]:
ind[v] += 1
Q = deque()
for i in G:
if ind[i] == 0:
Q.append(i)
if len(Q) == 0:
return
v = Q.popleft()
print v
for w in G[v]:
ind[w] -= 1
if ind[w] == 0:
Q.append(w)
topo(G, ind, Q)
"""
--------------------------------------------------------------------------------
Reading an Adjacency matrix
--------------------------------------------------------------------------------
"""
def adjm():
n, a = input(), []
for i in xrange(n):
a.append(map(int, raw_input().split()))
return a, n
"""
--------------------------------------------------------------------------------
Floyd Warshall's algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def floy((A, n)):
dist = list(A)
path = [[0] * n for i in xrange(n)]
for k in xrange(n):
for i in xrange(n):
for j in xrange(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print dist
"""
--------------------------------------------------------------------------------
Prim's MST Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to nearest node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def prim(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
"""
--------------------------------------------------------------------------------
Accepting Edge list
Vars : n - Number of nodes
m - Number of edges
Returns : l - Edge list
n - Number of Nodes
--------------------------------------------------------------------------------
"""
def edglist():
n, m = map(int, raw_input().split(" "))
l = []
for i in xrange(m):
l.append(map(int, raw_input().split(' ')))
return l, n
"""
--------------------------------------------------------------------------------
Kruskal's MST Algorithm
Args : E - Edge list
n - Number of Nodes
Vars : s - Set of all nodes as unique disjoint sets (initially)
--------------------------------------------------------------------------------
"""
def krusk((E, n)):
# Sort edges on the basis of distance
E.sort(reverse=True, key=lambda x: x[2])
s = [set([i]) for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print s
x = E.pop()
for i in xrange(len(s)):
if x[0] in s[i]:
break
for j in xrange(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break

View File

@ -0,0 +1,305 @@
#-*- coding: utf-8 -*-
'''
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
Name - - CNN - Convolution Neural Network For Photo Recognizing
Goal - - Recognize Handing Writting Word Photo
DetailTotal 5 layers neural network
* Convolution layer
* Pooling layer
* Input layer layer of BP
* Hiden layer of BP
* Output layer of BP
Author: Stephen Lee
Github: 245885195@qq.com
Date: 2017.9.20
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
'''
import numpy as np
import matplotlib.pyplot as plt
class CNN():
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
'''
:param conv1_get: [a,c,d]size, number, step of convolution kernel
:param size_p1: pooling size
:param bp_num1: units number of flatten layer
:param bp_num2: units number of hidden layer
:param bp_num3: units number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num_bp1 = bp_num1
self.num_bp2 = bp_num2
self.num_bp3 = bp_num3
self.conv1 = conv1_get[:2]
self.step_conv1 = conv1_get[2]
self.size_pooling1 = size_p1
self.rate_weight = rate_w
self.rate_thre = rate_t
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
def save_model(self,save_path):
#save model dict with pickle
import pickle
model_dic = {'num_bp1':self.num_bp1,
'num_bp2':self.num_bp2,
'num_bp3':self.num_bp3,
'conv1':self.conv1,
'step_conv1':self.step_conv1,
'size_pooling1':self.size_pooling1,
'rate_weight':self.rate_weight,
'rate_thre':self.rate_thre,
'w_conv1':self.w_conv1,
'wkj':self.wkj,
'vji':self.vji,
'thre_conv1':self.thre_conv1,
'thre_bp2':self.thre_bp2,
'thre_bp3':self.thre_bp3}
with open(save_path, 'wb') as f:
pickle.dump(model_dic, f)
print('Model saved %s'% save_path)
@classmethod
def ReadModel(cls,model_path):
#read saved model
import pickle
with open(model_path, 'rb') as f:
model_dic = pickle.load(f)
conv_get= model_dic.get('conv1')
conv_get.append(model_dic.get('step_conv1'))
size_p1 = model_dic.get('size_pooling1')
bp1 = model_dic.get('num_bp1')
bp2 = model_dic.get('num_bp2')
bp3 = model_dic.get('num_bp3')
r_w = model_dic.get('rate_weight')
r_t = model_dic.get('rate_thre')
#create model instance
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
#modify model parameter
conv_ins.w_conv1 = model_dic.get('w_conv1')
conv_ins.wkj = model_dic.get('wkj')
conv_ins.vji = model_dic.get('vji')
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
return conv_ins
def sig(self,x):
return 1 / (1 + np.exp(-1*x))
def do_round(self,x):
return round(x, 3)
def convolute(self,data,convs,w_convs,thre_convs,conv_step):
#convolution process
size_conv = convs[0]
num_conv =convs[1]
size_data = np.shape(data)[0]
#get the data slice of original image data, data_focus
data_focus = []
for i_focus in range(0, size_data - size_conv + 1, conv_step):
for j_focus in range(0, size_data - size_conv + 1, conv_step):
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
data_focus.append(focus)
#caculate the feature map of every single kernel, and saved as list of matrix
data_featuremap = []
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
for i_map in range(num_conv):
featuremap = []
for i_focus in range(len(data_focus)):
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
featuremap.append(self.sig(net_focus))
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
data_featuremap.append(featuremap)
#expanding the data slice to One dimenssion
focus1_list = []
for each_focus in data_focus:
focus1_list.extend(self.Expand_Mat(each_focus))
focus_list = np.asarray(focus1_list)
return focus_list,data_featuremap
def pooling(self,featuremaps,size_pooling,type='average_pool'):
#pooling process
size_map = len(featuremaps[0])
size_pooled = int(size_map/size_pooling)
featuremap_pooled = []
for i_map in range(len(featuremaps)):
map = featuremaps[i_map]
map_pooled = []
for i_focus in range(0,size_map,size_pooling):
for j_focus in range(0, size_map, size_pooling):
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
if type == 'average_pool':
#average pooling
map_pooled.append(np.average(focus))
elif type == 'max_pooling':
#max pooling
map_pooled.append(np.max(focus))
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
featuremap_pooled.append(map_pooled)
return featuremap_pooled
def _expand(self,datas):
#expanding three dimension data to one dimension list
data_expanded = []
for i in range(len(datas)):
shapes = np.shape(datas[i])
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
data_listed = data_listed.getA().tolist()[0]
data_expanded.extend(data_listed)
data_expanded = np.asarray(data_expanded)
return data_expanded
def _expand_mat(self,data_mat):
#expanding matrix to one dimension list
data_mat = np.asarray(data_mat)
shapes = np.shape(data_mat)
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
return data_expanded
def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
'''
calcluate the gradient from the data slice of pool layer
pd_pool: list of matrix
out_map: the shape of data slice(size_map*size_map)
return: pd_all: list of matrix, [num, size_map, size_map]
'''
pd_all = []
i_pool = 0
for i_map in range(num_map):
pd_conv1 = np.ones((size_map, size_map))
for i in range(0, size_map, size_pooling):
for j in range(0, size_map, size_pooling):
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
i_pool = i_pool + 1
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
pd_all.append(pd_conv2)
return pd_all
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
#model traning
print('----------------------Start Training-------------------------')
print(' - - Shape: Train_Data ',np.shape(datas_train))
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
rp = 0
all_mse = []
mse = 10000
while rp < n_repeat and mse >= error_accuracy:
alle = 0
print('-------------Learning Time %d--------------'%rp)
for p in range(len(datas_train)):
#print('------------Learning Image: %d--------------'%p)
data_train = np.asmatrix(datas_train[p])
data_teach = np.asarray(datas_teach[p])
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
self.thre_conv1,conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
shape_featuremap1 = np.shape(data_conved1)
'''
print(' -----original shape ', np.shape(data_train))
print(' ---- after convolution ',np.shape(data_conv1))
print(' -----after pooling ',np.shape(data_pooled1))
'''
data_bp_input = self._expand(data_pooled1)
bp_out1 = data_bp_input
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
#--------------Model Leaning ------------------------
# calcluate error and gradient---------------
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
pd_i_all = np.dot(pd_j_all,self.vji)
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
shape_featuremap1[1],self.size_pooling1)
#weight and threshold learning process---------
#convolution layer
for k_conv in range(self.conv1[1]):
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
#all connected layer
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
# calculate the sum error of all single image
errors = np.sum(abs((data_teach - bp_out3)))
alle = alle + errors
#print(' ----Teach ',data_teach)
#print(' ----BP_output ',bp_out3)
rp = rp + 1
mse = alle/patterns
all_mse.append(mse)
def draw_error():
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(all_mse, '+-')
plt.plot(yplot, 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(True, alpha=0.5)
plt.show()
print('------------------Training Complished---------------------')
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
if draw_e:
draw_error()
return mse
def predict(self,datas_test):
#model predict
produce_out = []
print('-------------------Start Testing-------------------------')
print(' - - Shape: Test_Data ',np.shape(datas_test))
for p in range(len(datas_test)):
data_test = np.asmatrix(datas_test[p])
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
data_bp_input = self._expand(data_pooled1)
bp_out1 = data_bp_input
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
produce_out.extend(bp_out3.getA().tolist())
res = [list(map(self.do_round,each)) for each in produce_out]
return np.asarray(res)
def convolution(self,data):
#return the data of image after convoluting process so we can check it out
data_test = np.asmatrix(data)
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
return data_conved1,data_pooled1
if __name__ == '__main__':
pass
'''
I will put the example on other file
'''

View File

@ -0,0 +1,152 @@
#-*- coding:utf-8 -*-
'''
Author: Stephen Lee
Date: 2017.9.21
BP neural network with three layers
'''
import numpy as np
import matplotlib.pyplot as plt
class Bpnn():
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
'''
:param n_layer1: number of input layer
:param n_layer2: number of hiden layer
:param n_layer3: number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num1 = n_layer1
self.num2 = n_layer2
self.num3 = n_layer3
self.rate_weight = rate_w
self.rate_thre = rate_t
self.thre2 = -2*np.random.rand(self.num2)+1
self.thre3 = -2*np.random.rand(self.num3)+1
self.vji = np.mat(-2*np.random.rand(self.num2, self.num1)+1)
self.wkj = np.mat(-2*np.random.rand(self.num3, self.num2)+1)
def sig(self,x):
return 1 / (1 + np.exp(-1*x))
def sig_plain(self,x):
return 1 / (1 + np.exp(-1*x))
def do_round(self,x):
return round(x, 3)
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False):
'''
:param patterns: the number of patterns
:param data_train: training data x; numpy.ndarray
:param data_teach: training data y; numpy.ndarray
:param n_repeat: echoes
:param error_accuracy: error accuracy
:return: None
'''
data_train = np.asarray(data_train)
data_teach = np.asarray(data_teach)
# print('-------------------Start Training-------------------------')
# print(' - - Shape: Train_Data ',np.shape(data_train))
# print(' - - Shape: Teach_Data ',np.shape(data_teach))
rp = 0
all_mse = []
mse = 10000
while rp < n_repeat and mse >= error_accuracy:
alle = 0
final_out = []
for g in range(np.shape(data_train)[0]):
net_i = data_train[g]
out1 = net_i
net_j = out1 * self.vji.T - self.thre2
out2=self.sig(net_j)
net_k = out2 * self.wkj.T - self.thre3
out3 = self.sig(net_k)
# learning process
pd_k_all = np.multiply(np.multiply(out3,(1 - out3)),(data_teach[g]-out3))
pd_j_all = np.multiply(pd_k_all * self.wkj,np.multiply(out2,1-out2))
#upgrade weight
self.wkj = self.wkj + pd_k_all.T * out2 *self.rate_weight
self.vji = self.vji + pd_j_all.T * out1 * self.rate_weight
#upgrade threshold
self.thre3 = self.thre3 - pd_k_all * self.rate_thre
self.thre2 = self.thre2 - pd_j_all * self.rate_thre
#calculate sum of error
errors = np.sum(abs((data_teach[g] - out3)))
alle = alle + errors
final_out.extend(out3.getA().tolist())
final_out3 = [list(map(self.do_round,each)) for each in final_out]
rp = rp + 1
mse = alle/patterns
all_mse.append(mse)
def draw_error():
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(all_mse, '+-')
plt.plot(yplot, 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(True,alpha = 0.7)
plt.show()
# print('------------------Training Complished---------------------')
# print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
# print(' - - Last Output: ', final_out3)
if draw_e:
draw_error()
def predict(self,data_test):
'''
:param data_test: data test, numpy.ndarray
:return: predict output data
'''
data_test = np.asarray(data_test)
produce_out = []
# print('-------------------Start Testing-------------------------')
# print(' - - Shape: Test_Data ',np.shape(data_test))
# print(np.shape(data_test))
for g in range(np.shape(data_test)[0]):
net_i = data_test[g]
out1 = net_i
net_j = out1 * self.vji.T - self.thre2
out2 = self.sig(net_j)
net_k = out2 * self.wkj.T - self.thre3
out3 = self.sig(net_k)
produce_out.extend(out3.getA().tolist())
res = [list(map(self.do_round,each)) for each in produce_out]
return np.asarray(res)
def main():
#example data
data_x = [[1,2,3,4],
[5,6,7,8],
[2,2,3,4],
[7,7,8,8]]
data_y = [[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]]
test_x = [[1,2,3,4],
[3,2,3,4]]
#building network model
model = Bpnn(4,10,4)
#training the model
model.trian(patterns=4,data_train=data_x,data_teach=data_y,
n_repeat=100,error_accuracy=0.1,draw_e=True)
#predicting data
model.predict(test_x)
if __name__ == '__main__':
main()

View File

@ -1,4 +1,4 @@
# The Algorithms - Python [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python)
# The Algorithms - Python <!-- [![Build Status](https://travis-ci.org/TheAlgorithms/Python.svg)](https://travis-ci.org/TheAlgorithms/Python) -->
### All algorithms implemented in Python (for education)
@ -128,6 +128,13 @@ The method is named after **Julius Caesar**, who used it in his private correspo
The encryption step performed by a Caesar cipher is often incorporated as part of more complex schemes, such as the Vigenère cipher, and still has modern application in the ROT13 system. As with all single-alphabet substitution ciphers, the Caesar cipher is easily broken and in modern practice offers essentially no communication security.
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Caesar_cipher)
### Vigenère
The **Vigenère cipher** is a method of encrypting alphabetic text by using a series of **interwoven Caesar ciphers** based on the letters of a keyword. It is **a form of polyalphabetic substitution**.<br>
The Vigenère cipher has been reinvented many times. The method was originally described by Giovan Battista Bellaso in his 1553 book La cifra del. Sig. Giovan Battista Bellaso; however, the scheme was later misattributed to Blaise de Vigenère in the 19th century, and is now widely known as the "Vigenère cipher".<br>
Though the cipher is easy to understand and implement, for three centuries it resisted all attempts to break it; this earned it the description **le chiffre indéchiffrable**(French for 'the indecipherable cipher').
Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. Friedrich Kasiski was the first to publish a general method of deciphering a Vigenère cipher in 1863.
###### Source: [Wikipedia](https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher)
### Transposition
In cryptography, a **transposition cipher** is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed (the plaintext is reordered).<br>
Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt.

View File

@ -7,40 +7,42 @@ class Node:
def __init__(self, label):
self.label = label
self.left = None
self.rigt = None
self.parent = None
self._parent = None
self._left = None
self._right = None
self.height = 0
def getLabel(self):
return self.label
@property
def right(self):
return self._right
def setLabel(self, label):
self.label = label
@right.setter
def right(self, node):
if node is not None:
node._parent = self
self._right = node
def getLeft(self):
return self.left
@property
def left(self):
return self._left
def setLeft(self, left):
self.left = left
@left.setter
def left(self, node):
if node is not None:
node._parent = self
self._left = node
def getRight(self):
return self.rigt
@property
def parent(self):
return self._parent
def setRight(self, right):
self.rigt = right
def getParent(self):
return self.parent
def setParent(self, parent):
self.parent = parent
def setHeight(self, height):
self.height = height
def getHeight(self, height):
return self.height
@parent.setter
def parent(self, node):
if node is not None:
self._parent = node
self.height = self.parent.height + 1
else:
self.height = 0
class AVL:
@ -51,8 +53,10 @@ class AVL:
def insert(self, value):
node = Node(value)
if self.root is None:
self.root = node
self.root.height = 0
self.size = 1
else:
# Same as Binary Tree
@ -64,63 +68,77 @@ class AVL:
dad_node = curr_node
if node.getLabel() < curr_node.getLabel():
curr_node = curr_node.getLeft()
if node.label < curr_node.label:
curr_node = curr_node.left
else:
curr_node = curr_node.getRight()
curr_node = curr_node.right
else:
if node.getLabel() < dad_node.getLabel():
dad_node.setLeft(node)
dad_node.setHeight(dad_node.getHeight() + 1)
if (dad_node.getRight().getHeight() -
dad_node.getLeft.getHeight() > 1):
self.rebalance(dad_node)
node.height = dad_node.height
dad_node.height += 1
if node.label < dad_node.label:
dad_node.left = node
else:
dad_node.setRight(node)
dad_node.setHeight(dad_node.getHeight() + 1)
if (dad_node.getRight().getHeight() -
dad_node.getLeft.getHeight() > 1):
self.rebalance(dad_node)
dad_node.right = node
self.rebalance(node)
self.size += 1
break
def rebalance(self, node):
if (node.getRight().getHeight() -
node.getLeft.getHeight() > 1):
if (node.getRight().getHeight() >
node.getLeft.getHeight()):
pass
else:
pass
pass
elif (node.getRight().getHeight() -
node.getLeft.getHeight() > 2):
if (node.getRight().getHeight() >
node.getLeft.getHeight()):
pass
else:
pass
pass
pass
n = node
while n is not None:
height_right = n.height
height_left = n.height
if n.right is not None:
height_right = n.right.height
if n.left is not None:
height_left = n.left.height
if abs(height_left - height_right) > 1:
if height_left > height_right:
left_child = n.left
if left_child is not None:
h_right = (right_child.right.height
if (right_child.right is not None) else 0)
h_left = (right_child.left.height
if (right_child.left is not None) else 0)
if (h_left > h_right):
self.rotate_left(n)
break
else:
self.double_rotate_right(n)
break
else:
right_child = n.right
if right_child is not None:
h_right = (right_child.right.height
if (right_child.right is not None) else 0)
h_left = (right_child.left.height
if (right_child.left is not None) else 0)
if (h_left > h_right):
self.double_rotate_left(n)
break
else:
self.rotate_right(n)
break
n = n.parent
def rotate_left(self, node):
# TODO: is this pythonic enought?
aux = node.getLabel()
node = aux.getRight()
node.setHeight(node.getHeight() - 1)
node.setLeft(Node(aux))
node.getLeft().setHeight(node.getHeight() + 1)
node.getRight().setHeight(node.getRight().getHeight() - 1)
aux = node.parent.label
node.parent.label = node.label
node.parent.right = Node(aux)
node.parent.right.height = node.parent.height + 1
node.parent.left = node.right
def rotate_right(self, node):
aux = node.getLabel()
node = aux.getLeft()
node.setHeight(node.getHeight() - 1)
node.setRight(Node(aux))
node.getLeft().setHeight(node.getHeight() + 1)
node.getLeft().setHeight(node.getLeft().getHeight() - 1)
aux = node.parent.label
node.parent.label = node.label
node.parent.left = Node(aux)
node.parent.left.height = node.parent.height + 1
node.parent.right = node.right
def double_rotate_left(self, node):
self.rotate_right(node.getRight().getRight())
@ -129,3 +147,34 @@ class AVL:
def double_rotate_right(self, node):
self.rotate_left(node.getLeft().getLeft())
self.rotate_right(node)
def empty(self):
if self.root is None:
return True
return False
def preShow(self, curr_node):
if curr_node is not None:
self.preShow(curr_node.left)
print(curr_node.label, end=" ")
self.preShow(curr_node.right)
def preorder(self, curr_node):
if curr_node is not None:
self.preShow(curr_node.left)
self.preShow(curr_node.right)
print(curr_node.label, end=" ")
def getRoot(self):
return self.root
t = AVL()
t.insert(1)
t.insert(2)
t.insert(3)
# t.preShow(t.root)
# print("\n")
# t.insert(4)
# t.insert(5)
# t.preShow(t.root)
# t.preorden(t.root)

1
data_structures/Arrays Normal file
View File

@ -0,0 +1 @@
Arrays implimentation using python programming.

View File

@ -0,0 +1,28 @@
class FenwickTree:
def __init__(self, SIZE): # create fenwick tree with size SIZE
self.Size = SIZE
self.ft = [0 for i in range (0,SIZE)]
def update(self, i, val): # update data (adding) in index i in O(lg N)
while (i < self.Size):
self.ft[i] += val
i += i & (-i)
def query(self, i): # query cumulative data from index 0 to i in O(lg N)
ret = 0
while (i > 0):
ret += self.ft[i]
i -= i & (-i)
return ret
if __name__ == '__main__':
f = FenwickTree(100)
f.update(1,20)
f.update(4,4)
print (f.query(1))
print (f.query(3))
print (f.query(4))
f.update(2,-5)
print (f.query(1))
print (f.query(3))

View File

@ -0,0 +1,90 @@
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
self.lazy = [0 for i in range(0,4*N)] # create array to store lazy update
self.flag = [0 for i in range(0,4*N)] # flag for lazy update
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
# update with O(lg N) (Normal segment tree without lazy update will take O(Nlg N) for each update)
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l!=r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return True
if l >= a and r <= b :
self.st[idx] = val
if l!=r:
self.lazy[self.left(idx)] = val
self.lazy[self.right(idx)] = val
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
# query with O(lg N)
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if self.flag[idx] == True:
self.st[idx] = self.lazy[idx]
self.flag[idx] = False
if l != r:
self.lazy[self.left(idx)] = self.lazy[idx]
self.lazy[self.right(idx)] = self.lazy[idx]
self.flag[self.left(idx)] = True
self.flag[self.right(idx)] = True
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -0,0 +1,64 @@
import math
class SegmentTree:
def __init__(self, N):
self.N = N
self.st = [0 for i in range(0,4*N)] # approximate the overall size of segment tree with array N
def left(self, idx):
return idx*2
def right(self, idx):
return idx*2 + 1
def build(self, idx, l, r, A):
if l==r:
self.st[idx] = A[l-1]
else :
mid = (l+r)//2
self.build(self.left(idx),l,mid, A)
self.build(self.right(idx),mid+1,r, A)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
def update(self, idx, l, r, a, b, val): # update(1, 1, N, a, b, v) for update val v to [a,b]
if r < a or l > b:
return True
if l == r :
self.st[idx] = val
return True
mid = (l+r)//2
self.update(self.left(idx),l,mid,a,b,val)
self.update(self.right(idx),mid+1,r,a,b,val)
self.st[idx] = max(self.st[self.left(idx)] , self.st[self.right(idx)])
return True
def query(self, idx, l, r, a, b): #query(1, 1, N, a, b) for query max of [a,b]
if r < a or l > b:
return -math.inf
if l >= a and r <= b:
return self.st[idx]
mid = (l+r)//2
q1 = self.query(self.left(idx),l,mid,a,b)
q2 = self.query(self.right(idx),mid+1,r,a,b)
return max(q1,q2)
def showData(self):
showList = []
for i in range(1,N+1):
showList += [self.query(1, 1, self.N, i, i)]
print (showList)
if __name__ == '__main__':
A = [1,2,-4,7,3,-5,6,11,-20,9,14,15,5,2,-8]
N = 15
segt = SegmentTree(N)
segt.build(1,1,N,A)
print (segt.query(1,1,N,4,6))
print (segt.query(1,1,N,7,11))
print (segt.query(1,1,N,7,12))
segt.update(1,1,N,1,3,111)
print (segt.query(1,1,N,1,15))
segt.update(1,1,N,7,8,235)
segt.showData()

View File

@ -8,7 +8,7 @@ class Node:
def __init__(self, label):
self.label = label
self.left = None
self.rigt = None
self.right = None
def getLabel(self):
return self.label
@ -23,10 +23,10 @@ class Node:
self.left = left
def getRight(self):
return self.rigt
return self.right
def setRight(self, right):
self.rigt = right
self.right = right
class BinarySearchTree:
@ -68,7 +68,7 @@ class BinarySearchTree:
return False
def preShow(self, curr_node):
if curr_node is None:
if curr_node is not None:
print(curr_node.getLabel(), end=" ")
self.preShow(curr_node.getLeft())

View File

@ -0,0 +1,211 @@
# Title: Dijkstra's Algorithm for finding single source shortest path from scratch
# Author: Shubham Malik
# References: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
import math
import sys
# For storing the vertex set to retreive node with the lowest distance
class PriorityQueue:
# Based on Min Heap
def __init__(self):
self.cur_size = 0
self.array = []
self.pos = {} # To store the pos of node in array
def isEmpty(self):
return self.cur_size == 0
def min_heapify(self, idx):
lc = self.left(idx)
rc = self.right(idx)
if lc < self.cur_size and self.array(lc)[0] < self.array(idx)[0]:
smallest = lc
else:
smallest = idx
if rc < self.cur_size and self.array(rc)[0] < self.array(smallest)[0]:
smallest = rc
if smallest != idx:
self.swap(idx, smallest)
self.min_heapify(smallest)
def insert(self, tup):
# Inserts a node into the Priority Queue
self.pos[tup[1]] = self.cur_size
self.cur_size += 1
self.array.append((sys.maxsize, tup[1]))
self.decrease_key((sys.maxsize, tup[1]), tup[0])
def extract_min(self):
# Removes and returns the min element at top of priority queue
min_node = self.array[0][1]
self.array[0] = self.array[self.cur_size - 1]
self.cur_size -= 1
self.min_heapify(1)
del self.pos[min_node]
return min_node
def left(self, i):
# returns the index of left child
return 2 * i + 1
def right(self, i):
# returns the index of right child
return 2 * i + 2
def par(self, i):
# returns the index of parent
return math.floor(i / 2)
def swap(self, i, j):
# swaps array elements at indices i and j
# update the pos{}
self.pos[self.array[i][1]] = j
self.pos[self.array[j][1]] = i
temp = self.array[i]
self.array[i] = self.array[j]
self.array[j] = temp
def decrease_key(self, tup, new_d):
idx = self.pos[tup[1]]
# assuming the new_d is atmost old_d
self.array[idx] = (new_d, tup[1])
while idx > 0 and self.array[self.par(idx)][0] > self.array[idx][0]:
self.swap(idx, self.par(idx))
idx = self.par(idx)
class Graph:
def __init__(self, num):
self.adjList = {} # To store graph: u -> (v,w)
self.num_nodes = num # Number of nodes in graph
# To store the distance from source vertex
self.dist = [0] * self.num_nodes
self.par = [-1] * self.num_nodes # To store the path
def add_edge(self, u, v, w):
# Edge going from node u to v and v to u with weight w
# u (w)-> v, v (w) -> u
# Check if u already in graph
if u in self.adjList.keys():
self.adjList[u].append((v, w))
else:
self.adjList[u] = [(v, w)]
# Assuming undirected graph
if v in self.adjList.keys():
self.adjList[v].append((u, w))
else:
self.adjList[v] = [(u, w)]
def show_graph(self):
# u -> v(w)
for u in self.adjList:
print(u, '->', ' -> '.join(str("{}({})".format(v, w))
for v, w in self.adjList[u]))
def dijkstra(self, src):
# Flush old junk values in par[]
self.par = [-1] * self.num_nodes
# src is the source node
self.dist[src] = 0
Q = PriorityQueue()
Q.insert((0, src)) # (dist from src, node)
for u in self.adjList.keys():
if u != src:
self.dist[u] = sys.maxsize # Infinity
self.par[u] = -1
while not Q.isEmpty():
u = Q.extract_min() # Returns node with the min dist from source
# Update the distance of all the neighbours of u and
# if their prev dist was INFINITY then push them in Q
for v, w in self.adjList[u]:
new_dist = self.dist[u] + w
if self.dist[v] > new_dist:
if self.dist[v] == sys.maxsize:
Q.insert((new_dist, v))
else:
Q.decrease_key((self.dist[v], v), new_dist)
self.dist[v] = new_dist
self.par[v] = u
# Show the shortest distances from src
self.show_distances(src)
def show_distances(self, src):
print("Distance from node: {}".format(src))
for u in range(self.num_nodes):
print('Node {} has distance: {}'.format(u, self.dist[u]))
def show_path(self, src, dest):
# To show the shortest path from src to dest
# WARNING: Use it *after* calling dijkstra
path = []
cost = 0
temp = dest
# Backtracking from dest to src
while self.par[temp] != -1:
path.append(temp)
if temp != src:
for v, w in self.adjList[temp]:
if v == self.par[temp]:
cost += w
break
temp = self.par[temp]
path.append(src)
path.reverse()
print('----Path to reach {} from {}----'.format(dest, src))
for u in path:
print('{}'.format(u), end=' ')
if u != dest:
print('-> ', end='')
print('\nTotal cost of path: ', cost)
if __name__ == '__main__':
graph = Graph(9)
graph.add_edge(0, 1, 4)
graph.add_edge(0, 7, 8)
graph.add_edge(1, 2, 8)
graph.add_edge(1, 7, 11)
graph.add_edge(2, 3, 7)
graph.add_edge(2, 8, 2)
graph.add_edge(2, 5, 4)
graph.add_edge(3, 4, 9)
graph.add_edge(3, 5, 14)
graph.add_edge(4, 5, 10)
graph.add_edge(5, 6, 2)
graph.add_edge(6, 7, 1)
graph.add_edge(6, 8, 6)
graph.add_edge(7, 8, 7)
graph.show_graph()
graph.dijkstra(0)
graph.show_path(0, 4)
# OUTPUT
# 0 -> 1(4) -> 7(8)
# 1 -> 0(4) -> 2(8) -> 7(11)
# 7 -> 0(8) -> 1(11) -> 6(1) -> 8(7)
# 2 -> 1(8) -> 3(7) -> 8(2) -> 5(4)
# 3 -> 2(7) -> 4(9) -> 5(14)
# 8 -> 2(2) -> 6(6) -> 7(7)
# 5 -> 2(4) -> 3(14) -> 4(10) -> 6(2)
# 4 -> 3(9) -> 5(10)
# 6 -> 5(2) -> 7(1) -> 8(6)
# Distance from node: 0
# Node 0 has distance: 0
# Node 1 has distance: 4
# Node 2 has distance: 12
# Node 3 has distance: 19
# Node 4 has distance: 21
# Node 5 has distance: 11
# Node 6 has distance: 9
# Node 7 has distance: 8
# Node 8 has distance: 14
# ----Path to reach 4 from 0----
# 0 -> 7 -> 6 -> 5 -> 4
# Total cost of path: 21

View File

@ -3,22 +3,15 @@ class Node:#create a Node
self.data=data#given data
self.next=None#given next to None
class Linked_List:
pass
def insert_tail(Head,data):#insert the data at tail
tamp=Head#create a tamp as a head
if(tamp==None):#if linkedlist is empty
newNod=Node()#create newNode Node type and given data and next
newNod.data=data
newNod.next=None
Head=newNod
def insert_tail(Head,data):
if(Head.next is None):
Head.next = Node(data)
else:
while tamp.next!=None:#find the last Node
tamp=tamp.next
newNod = Node()#create a new node
newNod.data = data
newNod.next = None
tamp.next=newNod#put the newnode into last node
return Head#return first node of linked list
insert_tail(Head.next, data)
def insert_head(Head,data):
tamp = Head
if (tamp == None):
@ -32,16 +25,18 @@ class Linked_List:
newNod.next = Head#put the Head at NewNode Next
Head=newNod#make a NewNode to Head
return Head
def Print(Head):#print every node data
tamp=Node()
def printList(Head):#print every node data
tamp=Head
while tamp!=None:
print(tamp.data)
tamp=tamp.next
def delete_head(Head):#delete from head
if Head!=None:
Head=Head.next
return Head#return new Head
def delete_tail(Head):#delete from tail
if Head!=None:
tamp = Node()
@ -50,12 +45,6 @@ class Linked_List:
tamp = tamp.next
tamp.next=None#delete the last element by give next None to 2nd last Element
return Head
def isEmpty(Head):
if(Head==None):#check Head is None or Not
return True#return Ture if list is empty
else:
return False#check False if it's not empty
return Head is None #Return if Head is none

View File

@ -1,27 +0,0 @@
# Author: OMKAR PATHAK
import Stack
def parseParenthesis(string):
balanced = 1
index = 0
myStack = Stack.Stack(len(string))
while (index < len(string)) and (balanced == 1):
check = string[index]
if check == '(':
myStack.push(check)
else:
if myStack.isEmpty():
balanced = 0
else:
myStack.pop()
index += 1
if balanced == 1 and myStack.isEmpty():
return True
else:
return False
if __name__ == '__main__':
print(parseParenthesis('((()))')) # True
print(parseParenthesis('((())')) # False

View File

@ -1,48 +0,0 @@
# Author: OMKAR PATHAK
import Stack
def isOperand(char):
return (ord(char) >= ord('a') and ord(char) <= ord('z')) or (ord(char) >= ord('A') and ord(char) <= ord('Z'))
def precedence(char):
if char == '+' or char == '-':
return 1
elif char == '*' or char == '/':
return 2
elif char == '^':
return 3
else:
return -1
def infixToPostfix(myExp, myStack):
postFix = []
for i in range(len(myExp)):
if (isOperand(myExp[i])):
postFix.append(myExp[i])
elif(myExp[i] == '('):
myStack.push(myExp[i])
elif(myExp[i] == ')'):
topOperator = myStack.pop()
while(not myStack.isEmpty() and topOperator != '('):
postFix.append(topOperator)
topOperator = myStack.pop()
else:
while (not myStack.isEmpty()) and (precedence(myExp[i]) <= precedence(myStack.peek())):
postFix.append(myStack.pop())
myStack.push(myExp[i])
while(not myStack.isEmpty()):
postFix.append(myStack.pop())
return ' '.join(postFix)
if __name__ == '__main__':
myExp = 'a+b*(c^d-e)^(f+g*h)-i'
myExp = [i for i in myExp]
print('Infix:',' '.join(myExp))
myStack = Stack.Stack(len(myExp))
print('Postfix:',infixToPostfix(myExp, myStack))
# OUTPUT:
# Infix: a + b * ( c ^ d - e ) ^ ( f + g * h ) - i
# Postfix: a b c d ^ e - f g h * + ^ * + i -

View File

@ -1,50 +0,0 @@
# Author: OMKAR PATHAK
class Stack(object):
def __init__(self, limit = 10):
self.stack = []
self.limit = limit
# for printing the stack contents
def __str__(self):
return ' '.join([str(i) for i in self.stack])
# for pushing an element on to the stack
def push(self, data):
if len(self.stack) >= self.limit:
print('Stack Overflow')
else:
self.stack.append(data)
# for popping the uppermost element
def pop(self):
if len(self.stack) <= 0:
return -1
else:
return self.stack.pop()
# for peeking the top-most element of the stack
def peek(self):
if len(self.stack) <= 0:
return -1
else:
return self.stack[len(self.stack) - 1]
# to check if stack is empty
def isEmpty(self):
return self.stack == []
# for checking the size of stack
def size(self):
return len(self.stack)
if __name__ == '__main__':
myStack = Stack()
for i in range(10):
myStack.push(i)
print(myStack)
myStack.pop() # popping the top element
print(myStack)
myStack.peek() # printing the top element
myStack.isEmpty()
myStack.size()

View File

@ -0,0 +1,21 @@
from Stack import Stack
__author__ = 'Omkar Pathak'
def balanced_parentheses(parentheses):
""" Use a stack to check if a string of parentheses are balanced."""
stack = Stack(len(parentheses))
for parenthesis in parentheses:
if parenthesis == '(':
stack.push(parenthesis)
elif parenthesis == ')':
stack.pop()
return not stack.is_empty()
if __name__ == '__main__':
examples = ['((()))', '((())']
print('Balanced parentheses demonstration:\n')
for example in examples:
print(example + ': ' + str(balanced_parentheses(example)))

View File

@ -0,0 +1,62 @@
import string
from Stack import Stack
__author__ = 'Omkar Pathak'
def is_operand(char):
return char in string.ascii_letters or char in string.digits
def precedence(char):
""" Return integer value representing an operator's precedence, or
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations
"""
dictionary = {'+': 1, '-': 1,
'*': 2, '/': 2,
'^': 3}
return dictionary.get(char, -1)
def infix_to_postfix(expression):
""" Convert infix notation to postfix notation using the Shunting-yard
algorithm.
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
"""
stack = Stack(len(expression))
postfix = []
for char in expression:
if is_operand(char):
postfix.append(char)
elif char not in {'(', ')'}:
while (not stack.is_empty()
and precedence(char) <= precedence(stack.peek())):
postfix.append(stack.pop())
stack.push(char)
elif char == '(':
stack.push(char)
elif char == ')':
while not stack.is_empty() and stack.peek() != '(':
postfix.append(stack.pop())
# Pop '(' from stack. If there is no '(', there is a mismatched
# parentheses.
if stack.peek() != '(':
raise ValueError('Mismatched parentheses')
stack.pop()
while not stack.is_empty():
postfix.append(stack.pop())
return ' '.join(postfix)
if __name__ == '__main__':
expression = 'a+b*(c^d-e)^(f+g*h)-i'
print('Infix to Postfix Notation demonstration:\n')
print('Infix notation: ' + expression)
print('Postfix notation: ' + infix_to_postfix(expression))

View File

@ -0,0 +1,16 @@
# Function to print element and NGE pair for all elements of list
def printNGE(arr):
for i in range(0, len(arr), 1):
next = -1
for j in range(i+1, len(arr), 1):
if arr[i] < arr[j]:
next = arr[j]
break
print(str(arr[i]) + " -- " + str(next))
# Driver program to test above function
arr = [11,13,21,3]
printNGE(arr)

View File

@ -0,0 +1,68 @@
__author__ = 'Omkar Pathak'
class Stack(object):
""" A stack is an abstract data type that serves as a collection of
elements with two principal operations: push() and pop(). push() adds an
element to the top of the stack, and pop() removes an element from the top
of a stack. The order in which elements come off of a stack are
Last In, First Out (LIFO).
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
"""
def __init__(self, limit=10):
self.stack = []
self.limit = limit
def __bool__(self):
return not bool(self.stack)
def __str__(self):
return str(self.stack)
def push(self, data):
""" Push an element to the top of the stack."""
if len(self.stack) >= self.limit:
raise StackOverflowError
self.stack.append(data)
def pop(self):
""" Pop an element off of the top of the stack."""
if self.stack:
return self.stack.pop()
else:
raise IndexError('pop from an empty stack')
def peek(self):
""" Peek at the top-most element of the stack."""
if self.stack:
return self.stack[-1]
def is_empty(self):
""" Check if a stack is empty."""
return not bool(self.stack)
def size(self):
""" Return the size of the stack."""
return len(self.stack)
class StackOverflowError(BaseException):
pass
if __name__ == '__main__':
stack = Stack()
for i in range(10):
stack.push(i)
print('Stack demonstration:\n')
print('Initial stack: ' + str(stack))
print('pop(): ' + str(stack.pop()))
print('After pop(), the stack is now: ' + str(stack))
print('peek(): ' + str(stack.peek()))
stack.push(100)
print('After push(100), the stack is now: ' + str(stack))
print('is_empty(): ' + str(stack.is_empty()))
print('size(): ' + str(stack.size()))

View File

@ -0,0 +1,37 @@
import math
class Graph:
def __init__(self, N = 0): # a graph with Node 0,1,...,N-1
self.N = N
self.W = [[math.inf for j in range(0,N)] for i in range(0,N)] # adjacency matrix for weight
self.dp = [[math.inf for j in range(0,N)] for i in range(0,N)] # dp[i][j] stores minimum distance from i to j
def addEdge(self, u, v, w):
self.dp[u][v] = w;
def floyd_warshall(self):
for k in range(0,self.N):
for i in range(0,self.N):
for j in range(0,self.N):
self.dp[i][j] = min(self.dp[i][j], self.dp[i][k] + self.dp[k][j])
def showMin(self, u, v):
return self.dp[u][v]
if __name__ == '__main__':
graph = Graph(5)
graph.addEdge(0,2,9)
graph.addEdge(0,4,10)
graph.addEdge(1,3,5)
graph.addEdge(2,3,7)
graph.addEdge(3,0,10)
graph.addEdge(3,1,2)
graph.addEdge(3,2,1)
graph.addEdge(3,4,6)
graph.addEdge(4,1,3)
graph.addEdge(4,2,4)
graph.addEdge(4,3,9)
graph.floyd_warshall()
graph.showMin(1,4)
graph.showMin(0,3)

View File

@ -0,0 +1,42 @@
"""
This program calculates the nth Fibonacci number in O(log(n)).
It's possible to calculate F(1000000) in less than a second.
"""
import sys
# returns F(n)
def fibonacci(n: int):
if n < 0:
raise ValueError("Negative arguments are not supported")
return _fib(n)[0]
# returns (F(n), F(n-1))
def _fib(n: int):
if n == 0:
# (F(0), F(1))
return (0, 1)
else:
# F(2n) = F(n)[2F(n+1) F(n)]
# F(2n+1) = F(n+1)^2+F(n)^2
a, b = _fib(n // 2)
c = a * (b * 2 - a)
d = a * a + b * b
if n % 2 == 0:
return (c, d)
else:
return (d, c + d)
if __name__ == "__main__":
args = sys.argv[1:]
if len(args) != 1:
print("Too few or too much parameters given.")
exit(1)
try:
n = int(args[0])
except ValueError:
print("Could not convert data to an integer.")
exit(1)
print("F(%d) = %d" % (n, fibonacci(n)))

View File

@ -30,7 +30,7 @@ if __name__ == '__main__':
import sys
print("\n********* Fibonacci Series Using Dynamic Programming ************\n")
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -0,0 +1,40 @@
#############################
# Author: Aravind Kashyap
# File: lis.py
# comments: This programme outputs the Longest Strictly Increasing Subsequence in O(NLogN)
# Where N is the Number of elements in the list
#############################
def CeilIndex(v,l,r,key):
while r-l > 1:
m = (l + r)/2
if v[m] >= key:
r = m
else:
l = m
return r
def LongestIncreasingSubsequenceLength(v):
if(len(v) == 0):
return 0
tail = [0]*len(v)
length = 1
tail[0] = v[0]
for i in range(1,len(v)):
if v[i] < tail[0]:
tail[0] = v[i]
elif v[i] > tail[length-1]:
tail[length] = v[i]
length += 1
else:
tail[CeilIndex(tail,-1,length-1,v[i])] = v[i]
return length
v = [2, 5, 3, 7, 11, 8, 10, 13, 6]
print LongestIncreasingSubsequenceLength(v)

View File

@ -0,0 +1,139 @@
"""
Implementation of a basic regression decision tree.
Input data set: The input data set must be 1-dimensional with continuous labels.
Output: The decision tree maps a real number input to a real number output.
"""
import numpy as np
class Decision_Tree:
def __init__(self, depth = 5, min_leaf_size = 5):
self.depth = depth
self.decision_boundary = 0
self.left = None
self.right = None
self.min_leaf_size = min_leaf_size
self.prediction = None
def mean_squared_error(self, labels, prediction):
"""
mean_squared_error:
@param labels: a one dimensional numpy array
@param prediction: a floating point value
return value: mean_squared_error calculates the error if prediction is used to estimate the labels
"""
if labels.ndim != 1:
print("Error: Input labels must be one dimensional")
return np.mean((labels - prediction) ** 2)
def train(self, X, y):
"""
train:
@param X: a one dimensional numpy array
@param y: a one dimensional numpy array.
The contents of y are the labels for the corresponding X values
train does not have a return value
"""
"""
this section is to check that the inputs conform to our dimensionality constraints
"""
if X.ndim != 1:
print("Error: Input data set must be one dimensional")
return
if len(X) != len(y):
print("Error: X and y have different lengths")
return
if y.ndim != 1:
print("Error: Data set labels must be one dimensional")
return
if len(X) < 2 * self.min_leaf_size:
self.prediction = np.mean(y)
return
if self.depth == 1:
self.prediction = np.mean(y)
return
best_split = 0
min_error = self.mean_squared_error(X,np.mean(y)) * 2
"""
loop over all possible splits for the decision tree. find the best split.
if no split exists that is less than 2 * error for the entire array
then the data set is not split and the average for the entire array is used as the predictor
"""
for i in range(len(X)):
if len(X[:i]) < self.min_leaf_size:
continue
elif len(X[i:]) < self.min_leaf_size:
continue
else:
error_left = self.mean_squared_error(X[:i], np.mean(y[:i]))
error_right = self.mean_squared_error(X[i:], np.mean(y[i:]))
error = error_left + error_right
if error < min_error:
best_split = i
min_error = error
if best_split != 0:
left_X = X[:best_split]
left_y = y[:best_split]
right_X = X[best_split:]
right_y = y[best_split:]
self.decision_boundary = X[best_split]
self.left = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
self.right = Decision_Tree(depth = self.depth - 1, min_leaf_size = self.min_leaf_size)
self.left.train(left_X, left_y)
self.right.train(right_X, right_y)
else:
self.prediction = np.mean(y)
return
def predict(self, x):
"""
predict:
@param x: a floating point value to predict the label of
the prediction function works by recursively calling the predict function
of the appropriate subtrees based on the tree's decision boundary
"""
if self.prediction is not None:
return self.prediction
elif self.left or self.right is not None:
if x >= self.decision_boundary:
return self.right.predict(x)
else:
return self.left.predict(x)
else:
print("Error: Decision tree not yet trained")
return None
def main():
"""
In this demonstration we're generating a sample data set from the sin function in numpy.
We then train a decision tree on the data set and use the decision tree to predict the
label of 10 different test values. Then the mean squared error over this test is displayed.
"""
X = np.arange(-1., 1., 0.005)
y = np.sin(X)
tree = Decision_Tree(depth = 10, min_leaf_size = 10)
tree.train(X,y)
test_cases = (np.random.rand(10) * 2) - 1
predictions = np.array([tree.predict(x) for x in test_cases])
avg_error = np.mean((predictions - test_cases) ** 2)
print("Test values: " + str(test_cases))
print("Predictions: " + str(predictions))
print("Average error: " + str(avg_error))
if __name__ == '__main__':
main()

View File

@ -0,0 +1,172 @@
'''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
Requirements:
- sklearn
- numpy
- matplotlib
Python:
- 3.5
Inputs:
- X , a 2D numpy array of features.
- k , number of clusters to create.
- initial_centroids , initial centroid values generated by utility function(mentioned in usage).
- maxiter , maximum number of iterations to process.
- heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func.
Usage:
1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
2. create initial_centroids,
initial_centroids = get_initial_centroids(
X,
k,
seed=0 # seed value for initial centroid generation, None for randomness(default=None)
)
3. find centroids and clusters using kmeans function.
centroids, cluster_assignment = kmeans(
X,
k,
initial_centroids,
maxiter=400,
record_heterogeneity=heterogeneity,
verbose=True # whether to print logs in console or not.(default=False)
)
4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list.
plot_heterogeneity(
heterogeneity,
k
)
5. Have fun..
'''
from sklearn.metrics import pairwise_distances
import numpy as np
TAG = 'K-MEANS-CLUST/ '
def get_initial_centroids(data, k, seed=None):
'''Randomly choose k data points as initial centroids'''
if seed is not None: # useful for obtaining consistent results
np.random.seed(seed)
n = data.shape[0] # number of data points
# Pick K indices from range [0, N).
rand_indices = np.random.randint(0, n, k)
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
# As long as at least one document in a cluster contains a word,
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
centroids = data[rand_indices,:]
return centroids
def centroid_pairwise_dist(X,centroids):
return pairwise_distances(X,centroids,metric='euclidean')
def assign_clusters(data, centroids):
# Compute distances between each data point and the set of centroids:
# Fill in the blank (RHS only)
distances_from_centroids = centroid_pairwise_dist(data,centroids)
# Compute cluster assignments for each data point:
# Fill in the blank (RHS only)
cluster_assignment = np.argmin(distances_from_centroids,axis=1)
return cluster_assignment
def revise_centroids(data, k, cluster_assignment):
new_centroids = []
for i in range(k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment==i]
# Compute the mean of the data points. Fill in the blank (RHS only)
centroid = member_data_points.mean(axis=0)
new_centroids.append(centroid)
new_centroids = np.array(new_centroids)
return new_centroids
def compute_heterogeneity(data, k, centroids, cluster_assignment):
heterogeneity = 0.0
for i in range(k):
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
member_data_points = data[cluster_assignment==i, :]
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
# Compute distances from centroid to data points (RHS only)
distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean')
squared_distances = distances**2
heterogeneity += np.sum(squared_distances)
return heterogeneity
from matplotlib import pyplot as plt
def plot_heterogeneity(heterogeneity, k):
plt.figure(figsize=(7,4))
plt.plot(heterogeneity, linewidth=4)
plt.xlabel('# Iterations')
plt.ylabel('Heterogeneity')
plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k))
plt.rcParams.update({'font.size': 16})
plt.show()
def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
'''This function runs k-means on given data and initial set of centroids.
maxiter: maximum number of iterations to run.(default=500)
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
if None, do not store the history.
verbose: if True, print how many data points changed their cluster labels in each iteration'''
centroids = initial_centroids[:]
prev_cluster_assignment = None
for itr in range(maxiter):
if verbose:
print(itr, end='')
# 1. Make cluster assignments using nearest centroids
cluster_assignment = assign_clusters(data,centroids)
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
centroids = revise_centroids(data,k, cluster_assignment)
# Check for convergence: if none of the assignments changed, stop
if prev_cluster_assignment is not None and \
(prev_cluster_assignment==cluster_assignment).all():
break
# Print number of new assignments
if prev_cluster_assignment is not None:
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
if verbose:
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
# Record heterogeneity convergence metric
if record_heterogeneity is not None:
# YOUR CODE HERE
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
record_heterogeneity.append(score)
prev_cluster_assignment = cluster_assignment[:]
return centroids, cluster_assignment
# Mock test below
if False: # change to true to run this test case.
import sklearn.datasets as ds
dataset = ds.load_iris()
k = 3
heterogeneity = []
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
record_heterogeneity=heterogeneity, verbose=True)
plot_heterogeneity(heterogeneity, k)

View File

@ -0,0 +1,34 @@
__author__ = "Tobias Carryer"
from time import time
class LinearCongruentialGenerator(object):
"""
A pseudorandom number generator.
"""
def __init__( self, multiplier, increment, modulo, seed=int(time()) ):
"""
These parameters are saved and used when nextNumber() is called.
modulo is the largest number that can be generated (exclusive). The most
efficent values are powers of 2. 2^32 is a common value.
"""
self.multiplier = multiplier
self.increment = increment
self.modulo = modulo
self.seed = seed
def next_number( self ):
"""
The smallest number that can be generated is zero.
The largest number that can be generated is modulo-1. modulo is set in the constructor.
"""
self.seed = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
lcg = LinearCongruentialGenerator(1664525, 1013904223, 2<<31)
while True :
print lcg.next_number()

View File

@ -0,0 +1,49 @@
"""
* Binary Exponentiation for Powers
* This is a method to find a^b in a time complexity of O(log b)
* This is one of the most commonly used methods of finding powers.
* Also useful in cases where solution to (a^b)%c is required,
* where a,b,c can be numbers over the computers calculation limits.
* Done using iteration, can also be done using recursion
* @author chinmoy159
* @version 1.0 dated 10/08/2017
"""
def b_expo(a, b):
res = 1
while b > 0:
if b&1:
res *= a
a *= a
b >>= 1
return res
def b_expo_mod(a, b, c):
res = 1
while b > 0:
if b&1:
res = ((res%c) * (a%c)) % c
a *= a
b >>= 1
return res
"""
* Wondering how this method works !
* It's pretty simple.
* Let's say you need to calculate a ^ b
* RULE 1 : a ^ b = (a*a) ^ (b/2) ---- example : 4 ^ 4 = (4*4) ^ (4/2) = 16 ^ 2
* RULE 2 : IF b is ODD, then ---- a ^ b = a * (a ^ (b - 1)) :: where (b - 1) is even.
* Once b is even, repeat the process to get a ^ b
* Repeat the process till b = 1 OR b = 0, because a^1 = a AND a^0 = 1
*
* As far as the modulo is concerned,
* the fact : (a*b) % c = ((a%c) * (b%c)) % c
* Now apply RULE 1 OR 2 whichever is required.
"""

View File

@ -0,0 +1,50 @@
"""
* Binary Exponentiation with Multiplication
* This is a method to find a*b in a time complexity of O(log b)
* This is one of the most commonly used methods of finding result of multiplication.
* Also useful in cases where solution to (a*b)%c is required,
* where a,b,c can be numbers over the computers calculation limits.
* Done using iteration, can also be done using recursion
* @author chinmoy159
* @version 1.0 dated 10/08/2017
"""
def b_expo(a, b):
res = 0
while b > 0:
if b&1:
res += a
a += a
b >>= 1
return res
def b_expo_mod(a, b, c):
res = 0
while b > 0:
if b&1:
res = ((res%c) + (a%c)) % c
a += a
b >>= 1
return res
"""
* Wondering how this method works !
* It's pretty simple.
* Let's say you need to calculate a ^ b
* RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2
* RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even.
* Once b is even, repeat the process to get a * b
* Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0
*
* As far as the modulo is concerned,
* the fact : (a+b) % c = ((a%c) + (b%c)) % c
* Now apply RULE 1 OR 2, whichever is required.
"""

18
other/euclidean_gcd.py Normal file
View File

@ -0,0 +1,18 @@
# https://en.wikipedia.org/wiki/Euclidean_algorithm
def euclidean_gcd(a, b):
while b:
t = b
b = a % b
a = t
return a
def main():
print("GCD(3, 5) = " + str(euclidean_gcd(3, 5)))
print("GCD(5, 3) = " + str(euclidean_gcd(5, 3)))
print("GCD(1, 3) = " + str(euclidean_gcd(1, 3)))
print("GCD(3, 6) = " + str(euclidean_gcd(3, 6)))
print("GCD(6, 3) = " + str(euclidean_gcd(6, 3)))
if __name__ == '__main__':
main()

View File

@ -110,10 +110,10 @@ def binary_search_by_recursion(sorted_collection, item, left, right):
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(sorted_collection, item, left, right-1)
return binary_search_by_recursion(sorted_collection, item, left, midpoint-1)
else:
return binary_search_by_recursion(sorted_collection, item, left+1, right)
return binary_search_by_recursion(sorted_collection, item, midpoint+1, right)
def __assert_sorted(collection):
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
@ -137,14 +137,14 @@ def __assert_sorted(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by coma:\n')
user_input = input_function('Enter numbers separated by comma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)

View File

@ -0,0 +1,102 @@
"""
This is pure python implementation of interpolation search algorithm
"""
from __future__ import print_function
import bisect
def interpolation_search(sorted_collection, item):
"""Pure implementation of interpolation search algorithm in Python
Be careful collection must be sorted, otherwise result will be
unpredictable
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
"""
left = 0
right = len(sorted_collection) - 1
while left <= right:
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
#out of range check
if point<0 or point>=len(sorted_collection):
return None
current_item = sorted_collection[point]
if current_item == item:
return point
else:
if item < current_item:
right = point - 1
else:
left = point + 1
return None
def interpolation_search_by_recursion(sorted_collection, item, left, right):
"""Pure implementation of interpolation search algorithm in Python by recursion
Be careful collection must be sorted, otherwise result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
"""
point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left])
#out of range check
if point<0 or point>=len(sorted_collection):
return None
if sorted_collection[point] == item:
return point
elif sorted_collection[point] > item:
return interpolation_search_by_recursion(sorted_collection, item, left, point-1)
else:
return interpolation_search_by_recursion(sorted_collection, item, point+1, right)
def __assert_sorted(collection):
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is sorted
:raise: :py:class:`ValueError` if collection is not sorted
Examples:
>>> __assert_sorted([0, 1, 2, 4])
True
>>> __assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be sorted
"""
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by comma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be sorted to apply interpolation search')
target_input = input_function(
'Enter a single number to be found in the list:\n'
)
target = int(target_input)
result = interpolation_search(collection, target)
if result is not None:
print('{} found at positions: {}'.format(target, result))
else:
print('Not found')

View File

@ -41,7 +41,7 @@ def linear_search(sequence, target):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

47
searches/quick_select.py Normal file
View File

@ -0,0 +1,47 @@
import collections
import sys
import random
import time
import math
"""
A python implementation of the quick select algorithm, which is efficient for calculating the value that would appear in the index of a list if it would be sorted, even if it is not already sorted
https://en.wikipedia.org/wiki/Quickselect
"""
def _partition(data, pivot):
"""
Three way partition the data into smaller, equal and greater lists,
in relationship to the pivot
:param data: The data to be sorted (a list)
:param pivot: The value to partition the data on
:return: Three list: smaller, equal and greater
"""
less, equal, greater = [], [], []
for element in data:
if element.address < pivot.address:
less.append(element)
elif element.address > pivot.address:
greater.append(element)
else:
equal.append(element)
return less, equal, greater
def quickSelect(list, k):
#k = len(list) // 2 when trying to find the median (index that value would be when list is sorted)
smaller = []
larger = []
pivot = random.randint(0, len(list) - 1)
pivot = list[pivot]
count = 0
smaller, equal, larger =_partition(list, pivot)
count = len(equal)
m = len(smaller)
#k is the pivot
if m <= k < m + count:
return pivot
# must be in smaller
elif m > k:
return quickSelect(smaller, k)
#must be in larger
else:
return quickSelect(larger, k - (m + count))

112
searches/ternary_search.py Normal file
View File

@ -0,0 +1,112 @@
'''
This is a type of divide and conquer algorithm which divides the search space into
3 parts and finds the target value based on the property of the array or list
(usually monotonic property).
Time Complexity : O(log3 N)
Space Complexity : O(1)
'''
import sys
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
precision = 10
# This is the linear search that will occur after the search space has become smaller.
def lin_search(left, right, A, target):
for i in range(left, right+1):
if(A[i] == target):
return i
# This is the iterative method of the ternary search algorithm.
def ite_ternary_search(A, target):
left = 0
right = len(A) - 1;
while(True):
if(left<right):
if(right-left < precision):
return lin_search(left,right,A,target)
oneThird = (left+right)/3+1;
twoThird = 2*(left+right)/3+1;
if(A[oneThird] == target):
return oneThird
elif(A[twoThird] == target):
return twoThird
elif(target < A[oneThird]):
right = oneThird-1
elif(A[twoThird] < target):
left = twoThird+1
else:
left = oneThird+1
right = twoThird-1
else:
return None
# This is the recursive method of the ternary search algorithm.
def rec_ternary_search(left, right, A, target):
if(left<right):
if(right-left < precision):
return lin_search(left,right,A,target)
oneThird = (left+right)/3+1;
twoThird = 2*(left+right)/3+1;
if(A[oneThird] == target):
return oneThird
elif(A[twoThird] == target):
return twoThird
elif(target < A[oneThird]):
return rec_ternary_search(left, oneThird-1, A, target)
elif(A[twoThird] < target):
return rec_ternary_search(twoThird+1, right, A, target)
else:
return rec_ternary_search(oneThird+1, twoThird-1, A, target)
else:
return None
# This function is to check if the array is sorted.
def __assert_sorted(collection):
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True
if __name__ == '__main__':
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by coma:\n')
collection = [int(item) for item in user_input.split(',')]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('Sequence must be sorted to apply the ternary search')
target_input = input_function(
'Enter a single number to be found in the list:\n'
)
target = int(target_input)
result1 = ite_ternary_search(collection, target)
result2 = rec_ternary_search(0, len(collection)-1, collection, target)
if result2 is not None:
print('Iterative search: {} found at positions: {}'.format(target, result1))
print('Recursive search: {} found at positions: {}'.format(target, result2))
else:
print('Not found')

View File

@ -41,7 +41,7 @@ def bogosort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -41,7 +41,7 @@ def bubble_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -23,7 +23,7 @@ def cocktail_shaker_sort(unsorted):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

72
sorts/counting_sort.py Normal file
View File

@ -0,0 +1,72 @@
"""
This is pure python implementation of counting sort algorithm
For doctests run following command:
python -m doctest -v counting_sort.py
or
python3 -m doctest -v counting_sort.py
For manual testing run:
python counting_sort.py
"""
from __future__ import print_function
def counting_sort(collection):
"""Pure implementation of counting sort algorithm in Python
:param collection: some mutable ordered collection with heterogeneous
comparable items inside
:return: the same collection ordered by ascending
Examples:
>>> counting_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> counting_sort([])
[]
>>> counting_sort([-2, -5, -45])
[-45, -5, -2]
"""
# if the collection is empty, returns empty
if collection == []:
return []
# get some information about the collection
coll_len = len(collection)
coll_max = max(collection)
coll_min = min(collection)
# create the counting array
counting_arr_length = coll_max + 1 - coll_min
counting_arr = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1, counting_arr_length):
counting_arr[i] = counting_arr[i] + counting_arr[i-1]
# create the output collection
ordered = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0, coll_len)):
ordered[counting_arr[collection[i] - coll_min]-1] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by a comma:\n')
unsorted = [int(item) for item in user_input.split(',')]
print(counting_sort(unsorted))

View File

@ -21,7 +21,7 @@ def gnome_sort(unsorted):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -41,7 +41,7 @@ def insertion_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -64,7 +64,7 @@ def merge_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -42,7 +42,7 @@ def quick_sort(ARRAY):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -2,19 +2,19 @@ def radixsort(lst):
RADIX = 10
maxLength = False
tmp , placement = -1, 1
while not maxLength:
maxLength = True
# declare and initialize buckets
buckets = [list() for _ in range( RADIX )]
# split lst between lists
for i in lst:
tmp = i / placement
tmp = i // placement
buckets[tmp % RADIX].append( i )
if maxLength and tmp > 0:
maxLength = False
# empty lists into lst array
a = 0
for b in range( RADIX ):
@ -22,6 +22,6 @@ def radixsort(lst):
for i in buck:
lst[a] = i
a += 1
# move to next
placement *= RADIX

View File

@ -44,7 +44,7 @@ def selection_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

View File

@ -45,7 +45,7 @@ def shell_sort(collection):
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input

81
sorts/timsort.py Normal file
View File

@ -0,0 +1,81 @@
def binary_search(lst, item, start, end):
if start == end:
if lst[start] > item:
return start
else:
return start + 1
if start > end:
return start
mid = (start + end) // 2
if lst[mid] < item:
return binary_search(lst, item, mid + 1, end)
elif lst[mid] > item:
return binary_search(lst, item, start, mid - 1)
else:
return mid
def insertion_sort(lst):
length = len(lst)
for index in range(1, length):
value = lst[index]
pos = binary_search(lst, value, 0, index - 1)
lst = lst[:pos] + [value] + lst[pos:index] + lst[index+1:]
return lst
def merge(left, right):
if not left:
return right
if not right:
return left
if left[0] < right[0]:
return [left[0]] + merge(left[1:], right)
return [right[0]] + merge(left, right[1:])
def timsort(lst):
runs, sorted_runs = [], []
length = len(lst)
new_run = [lst[0]]
sorted_array = []
for i in range(1, length):
if i == length - 1:
new_run.append(lst[i])
runs.append(new_run)
break
if lst[i] < lst[i - 1]:
if not new_run:
runs.append([lst[i - 1]])
new_run.append(lst[i])
else:
runs.append(new_run)
new_run = []
else:
new_run.append(lst[i])
for run in runs:
sorted_runs.append(insertion_sort(run))
for run in sorted_runs:
sorted_array = merge(sorted_array, run)
return sorted_array
def main():
lst = [5,9,10,3,-4,5,178,92,46,-18,0,7]
sorted_lst = timsort(lst)
print(sorted_lst)
if __name__ == '__main__':
main()

View File

@ -84,7 +84,7 @@ if __name__ == '__main__':
import sys
print("\n********* Binary Tree Traversals ************\n")
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# For python 2.x and 3.x compatibility: 3.x has no raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input