mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Added more functionality
Added topological sort, cycle detection and a function to report the nodes participating in cycles in graph(for a use case I myself needed ).
This commit is contained in:
parent
889f8fba3d
commit
b3a15175bd
|
@ -106,6 +106,133 @@ class DirectedGraph:
|
|||
def out_degree(self, u):
|
||||
return len(self.graph[u])
|
||||
|
||||
def topological_sort(self, s = -2):
|
||||
stack = []
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
sorted_nodes = []
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
sorted_nodes.append(stack.pop())
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return sorted_nodes
|
||||
|
||||
def cycle_nodes(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return list(anticipating_nodes)
|
||||
|
||||
def has_cycle(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
return True
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return False
|
||||
|
||||
class Graph:
|
||||
def __init__(self):
|
||||
|
@ -214,3 +341,98 @@ class Graph:
|
|||
return visited
|
||||
def degree(self, u):
|
||||
return len(self.graph[u])
|
||||
|
||||
def cycle_nodes(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return list(anticipating_nodes)
|
||||
|
||||
def has_cycle(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = list(self.graph.keys())[0]
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for __ in self.graph[s]:
|
||||
if visited.count(__[1]) > 0 and __[1] != parent and indirect_parents.count(__[1]) > 0 and not on_the_way_back:
|
||||
l = len(stack) - 1
|
||||
while True and l >= 0:
|
||||
if stack[l] == __[1]:
|
||||
anticipating_nodes.add(__[1])
|
||||
break
|
||||
else:
|
||||
return True
|
||||
anticipating_nodes.add(stack[l])
|
||||
l -= 1
|
||||
if visited.count(__[1]) < 1:
|
||||
stack.append(__[1])
|
||||
visited.append(__[1])
|
||||
ss =__[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss :
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return False
|
||||
|
|
Loading…
Reference in New Issue
Block a user