Created problem_34 in project_euler (#2305)

* Create __init__.py

* Add files via upload

* Rename solution.py.py to solution.py

* Delete __init__.py

* Update and rename solution.py to sol1.py

* Update sol1.py

* Create __init__.py

* Update __init__.py

* Delete __init__.py

* Add files via upload

* Update __init__.py

* Add #\n

* Update sol1.py

Incorporates the proposed changes

* Update sol1.py

* Update sol1.py

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update project_euler/problem_34/sol1.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Use int(n) instead of floor(n)

Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Kushagra Bansal 2020-08-13 20:22:47 +05:30 committed by GitHub
parent d687030d9e
commit b3ae39249d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 68 additions and 0 deletions

View File

@ -0,0 +1 @@
#

View File

@ -0,0 +1,67 @@
"""
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
Note: As 1! = 1 and 2! = 2 are not sums they are not included.
"""
def factorial(n: int) -> int:
"""Return the factorial of n.
>>> factorial(5)
120
>>> factorial(1)
1
>>> factorial(0)
1
>>> factorial(-1)
Traceback (most recent call last):
...
ValueError: n must be >= 0
>>> factorial(1.1)
Traceback (most recent call last):
...
ValueError: n must be exact integer
"""
if not n >= 0:
raise ValueError("n must be >= 0")
if int(n) != n:
raise ValueError("n must be exact integer")
if n + 1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
result *= factor
factor += 1
return result
def sum_of_digit_factorial(n: int) -> int:
"""
Returns the sum of the digits in n
>>> sum_of_digit_factorial(15)
121
>>> sum_of_digit_factorial(0)
1
"""
return sum(factorial(int(digit)) for digit in str(n))
def compute() -> int:
"""
Returns the sum of all numbers whose
sum of the factorials of all digits
add up to the number itself.
>>> compute()
40730
"""
return sum(
num
for num in range(3, 7 * factorial(9) + 1)
if sum_of_digit_factorial(num) == num
)
if __name__ == "__main__":
print(compute())