mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-23 22:23:35 +00:00
Add files via upload
This commit is contained in:
parent
b23cc1a515
commit
b3c2a73a10
@ -1,6 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||||
Name - - Sliding Window Attention Mechanism
|
Name - - sliding_window_attention.py
|
||||||
Goal - - Implement a neural network architecture using sliding window attention for sequence modeling tasks.
|
Goal - - Implement a neural network architecture using sliding window attention for sequence modeling tasks.
|
||||||
Detail: Total 5 layers neural network
|
Detail: Total 5 layers neural network
|
||||||
* Input layer
|
* Input layer
|
||||||
@ -13,6 +13,7 @@ Date: 2024.10.20
|
|||||||
References:
|
References:
|
||||||
1. Choromanska, A., et al. (2020). "On the Importance of Initialization and Momentum in Deep Learning." *Proceedings of the 37th International Conference on Machine Learning*.
|
1. Choromanska, A., et al. (2020). "On the Importance of Initialization and Momentum in Deep Learning." *Proceedings of the 37th International Conference on Machine Learning*.
|
||||||
2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention." *arXiv preprint arXiv:2006.16236*.
|
2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention." *arXiv preprint arXiv:2006.16236*.
|
||||||
|
3. [Attention Mechanisms in Neural Networks](https://en.wikipedia.org/wiki/Attention_(machine_learning))
|
||||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user