mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-14 18:49:47 +00:00
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
da81c073eb
commit
b526b4d4eb
@ -2,8 +2,10 @@ import pandas as pd
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
from typing import Dict, List
|
||||
|
||||
|
||||
class dbscan:
|
||||
'''
|
||||
"""
|
||||
DBSCAN Algorithm :
|
||||
Density-Based Spatial Clustering Of Applications With Noise
|
||||
Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN
|
||||
@ -21,9 +23,10 @@ class dbscan:
|
||||
obj = dbscan.dbscan(minPts, radius, file)
|
||||
obj.print_dbscan()
|
||||
obj.plot_dbscan()
|
||||
'''
|
||||
def __init__(self, minPts : int, radius : int, file : str) -> None:
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(self, minPts: int, radius: int, file: str) -> None:
|
||||
"""
|
||||
Constructor
|
||||
|
||||
Attributes:
|
||||
@ -48,13 +51,14 @@ class dbscan:
|
||||
6 | 4
|
||||
7 | 3
|
||||
-----
|
||||
'''
|
||||
"""
|
||||
self.minPts = minPts
|
||||
self.radius = radius
|
||||
self.file = file
|
||||
self.dict1 = self.perform_dbscan()
|
||||
|
||||
def perform_dbscan(self) -> Dict[int, List[int]]:
|
||||
'''
|
||||
"""
|
||||
Parameters:
|
||||
-----------
|
||||
None
|
||||
@ -62,7 +66,7 @@ class dbscan:
|
||||
Return:
|
||||
--------
|
||||
Dictionary with points and the list of points that lie in its radius
|
||||
'''
|
||||
"""
|
||||
data = pd.read_csv(self.file)
|
||||
|
||||
minPts = self.minPts
|
||||
@ -71,50 +75,75 @@ class dbscan:
|
||||
dict1 = {}
|
||||
for i in range(len(data)):
|
||||
for j in range(len(data)):
|
||||
dist = math.sqrt(pow(data['x'][j] - data['x'][i],2) + pow(data['y'][j] - data['y'][i],2))
|
||||
dist = math.sqrt(
|
||||
pow(data["x"][j] - data["x"][i], 2)
|
||||
+ pow(data["y"][j] - data["y"][i], 2)
|
||||
)
|
||||
if dist < e:
|
||||
if i+1 in dict1:
|
||||
dict1[i+1].append(j+1)
|
||||
if i + 1 in dict1:
|
||||
dict1[i + 1].append(j + 1)
|
||||
else:
|
||||
dict1[i+1] = [j+1,]
|
||||
dict1[i + 1] = [
|
||||
j + 1,
|
||||
]
|
||||
|
||||
return dict1
|
||||
|
||||
def print_dbscan(self) -> None:
|
||||
'''
|
||||
"""
|
||||
Outputs:
|
||||
--------
|
||||
Prints each point and if it is a core or a noise (w/ border)
|
||||
'''
|
||||
"""
|
||||
for i in self.dict1:
|
||||
print(i," ",self.dict1[i], end=' ---> ')
|
||||
print(i, " ", self.dict1[i], end=" ---> ")
|
||||
if len(self.dict1[i]) >= self.minPts:
|
||||
print("Core")
|
||||
else:
|
||||
for j in self.dict1:
|
||||
if i != j and len(self.dict1[j]) >= self.minPts and i in self.dict1[j]:
|
||||
if (
|
||||
i != j
|
||||
and len(self.dict1[j]) >= self.minPts
|
||||
and i in self.dict1[j]
|
||||
):
|
||||
print("Noise ---> Border")
|
||||
break
|
||||
else:
|
||||
print("Noise")
|
||||
|
||||
def plot_dbscan(self) -> None:
|
||||
'''
|
||||
"""
|
||||
Output:
|
||||
-------
|
||||
A matplotlib plot that show points as core and noise along with the circle that lie within it.
|
||||
'''
|
||||
"""
|
||||
data = pd.read_csv(self.file)
|
||||
e = self.radius
|
||||
for i in self.dict1:
|
||||
if len(self.dict1[i]) >= self.minPts:
|
||||
plt.scatter(data['x'][i-1], data['y'][i-1], color='red')
|
||||
circle = plt.Circle((data['x'][i-1], data['y'][i-1]), e, color='blue', fill=False)
|
||||
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="red")
|
||||
circle = plt.Circle(
|
||||
(data["x"][i - 1], data["y"][i - 1]), e, color="blue", fill=False
|
||||
)
|
||||
plt.gca().add_artist(circle)
|
||||
plt.text(data['x'][i-1], data['y'][i-1], 'P'+str(i), ha='center', va='bottom')
|
||||
plt.text(
|
||||
data["x"][i - 1],
|
||||
data["y"][i - 1],
|
||||
"P" + str(i),
|
||||
ha="center",
|
||||
va="bottom",
|
||||
)
|
||||
else:
|
||||
plt.scatter(data['x'][i-1], data['y'][i-1], color='green')
|
||||
plt.text(data['x'][i-1], data['y'][i-1], 'P'+str(i), ha='center', va='bottom')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
plt.title('DBSCAN Clustering')
|
||||
plt.legend(['Core','Noise'])
|
||||
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="green")
|
||||
plt.text(
|
||||
data["x"][i - 1],
|
||||
data["y"][i - 1],
|
||||
"P" + str(i),
|
||||
ha="center",
|
||||
va="bottom",
|
||||
)
|
||||
plt.xlabel("X")
|
||||
plt.ylabel("Y")
|
||||
plt.title("DBSCAN Clustering")
|
||||
plt.legend(["Core", "Noise"])
|
||||
plt.show()
|
||||
|
Loading…
x
Reference in New Issue
Block a user