mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Polynomial (#6745)
* implement function to handle polynomial operations * edit documentation * fix type hint and linter errors * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix short variable name * fix spelling Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
cc42300780
commit
b5d7f186f4
0
maths/polynomials/__init__.py
Normal file
0
maths/polynomials/__init__.py
Normal file
188
maths/polynomials/single_indeterminate_operations.py
Normal file
188
maths/polynomials/single_indeterminate_operations.py
Normal file
|
@ -0,0 +1,188 @@
|
|||
"""
|
||||
|
||||
This module implements a single indeterminate polynomials class
|
||||
with some basic operations
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Polynomial
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import MutableSequence
|
||||
|
||||
|
||||
class Polynomial:
|
||||
def __init__(self, degree: int, coefficients: MutableSequence[float]) -> None:
|
||||
"""
|
||||
The coefficients should be in order of degree, from smallest to largest.
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> p = Polynomial(2, [1, 2, 3, 4])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: The number of coefficients should be equal to the degree + 1.
|
||||
|
||||
"""
|
||||
if len(coefficients) != degree + 1:
|
||||
raise ValueError(
|
||||
"The number of coefficients should be equal to the degree + 1."
|
||||
)
|
||||
|
||||
self.coefficients: list[float] = list(coefficients)
|
||||
self.degree = degree
|
||||
|
||||
def __add__(self, polynomial_2: Polynomial) -> Polynomial:
|
||||
"""
|
||||
Polynomial addition
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> q = Polynomial(2, [1, 2, 3])
|
||||
>>> p + q
|
||||
6x^2 + 4x + 2
|
||||
"""
|
||||
|
||||
if self.degree > polynomial_2.degree:
|
||||
coefficients = self.coefficients[:]
|
||||
for i in range(polynomial_2.degree + 1):
|
||||
coefficients[i] += polynomial_2.coefficients[i]
|
||||
return Polynomial(self.degree, coefficients)
|
||||
else:
|
||||
coefficients = polynomial_2.coefficients[:]
|
||||
for i in range(self.degree + 1):
|
||||
coefficients[i] += self.coefficients[i]
|
||||
return Polynomial(polynomial_2.degree, coefficients)
|
||||
|
||||
def __sub__(self, polynomial_2: Polynomial) -> Polynomial:
|
||||
"""
|
||||
Polynomial subtraction
|
||||
>>> p = Polynomial(2, [1, 2, 4])
|
||||
>>> q = Polynomial(2, [1, 2, 3])
|
||||
>>> p - q
|
||||
1x^2
|
||||
"""
|
||||
return self + polynomial_2 * Polynomial(0, [-1])
|
||||
|
||||
def __neg__(self) -> Polynomial:
|
||||
"""
|
||||
Polynomial negation
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> -p
|
||||
- 3x^2 - 2x - 1
|
||||
"""
|
||||
return Polynomial(self.degree, [-c for c in self.coefficients])
|
||||
|
||||
def __mul__(self, polynomial_2: Polynomial) -> Polynomial:
|
||||
"""
|
||||
Polynomial multiplication
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> q = Polynomial(2, [1, 2, 3])
|
||||
>>> p * q
|
||||
9x^4 + 12x^3 + 10x^2 + 4x + 1
|
||||
"""
|
||||
coefficients: list[float] = [0] * (self.degree + polynomial_2.degree + 1)
|
||||
for i in range(self.degree + 1):
|
||||
for j in range(polynomial_2.degree + 1):
|
||||
coefficients[i + j] += (
|
||||
self.coefficients[i] * polynomial_2.coefficients[j]
|
||||
)
|
||||
|
||||
return Polynomial(self.degree + polynomial_2.degree, coefficients)
|
||||
|
||||
def evaluate(self, substitution: int | float) -> int | float:
|
||||
"""
|
||||
Evaluates the polynomial at x.
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> p.evaluate(2)
|
||||
17
|
||||
"""
|
||||
result: int | float = 0
|
||||
for i in range(self.degree + 1):
|
||||
result += self.coefficients[i] * (substitution**i)
|
||||
return result
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> print(p)
|
||||
3x^2 + 2x + 1
|
||||
"""
|
||||
polynomial = ""
|
||||
for i in range(self.degree, -1, -1):
|
||||
if self.coefficients[i] == 0:
|
||||
continue
|
||||
elif self.coefficients[i] > 0:
|
||||
if polynomial:
|
||||
polynomial += " + "
|
||||
else:
|
||||
polynomial += " - "
|
||||
|
||||
if i == 0:
|
||||
polynomial += str(abs(self.coefficients[i]))
|
||||
elif i == 1:
|
||||
polynomial += str(abs(self.coefficients[i])) + "x"
|
||||
else:
|
||||
polynomial += str(abs(self.coefficients[i])) + "x^" + str(i)
|
||||
|
||||
return polynomial
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> p
|
||||
3x^2 + 2x + 1
|
||||
"""
|
||||
return self.__str__()
|
||||
|
||||
def derivative(self) -> Polynomial:
|
||||
"""
|
||||
Returns the derivative of the polynomial.
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> p.derivative()
|
||||
6x + 2
|
||||
"""
|
||||
coefficients: list[float] = [0] * self.degree
|
||||
for i in range(self.degree):
|
||||
coefficients[i] = self.coefficients[i + 1] * (i + 1)
|
||||
return Polynomial(self.degree - 1, coefficients)
|
||||
|
||||
def integral(self, constant: int | float = 0) -> Polynomial:
|
||||
"""
|
||||
Returns the integral of the polynomial.
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> p.integral()
|
||||
1.0x^3 + 1.0x^2 + 1.0x
|
||||
"""
|
||||
coefficients: list[float] = [0] * (self.degree + 2)
|
||||
coefficients[0] = constant
|
||||
for i in range(self.degree + 1):
|
||||
coefficients[i + 1] = self.coefficients[i] / (i + 1)
|
||||
return Polynomial(self.degree + 1, coefficients)
|
||||
|
||||
def __eq__(self, polynomial_2: object) -> bool:
|
||||
"""
|
||||
Checks if two polynomials are equal.
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> q = Polynomial(2, [1, 2, 3])
|
||||
>>> p == q
|
||||
True
|
||||
"""
|
||||
if not isinstance(polynomial_2, Polynomial):
|
||||
return False
|
||||
|
||||
if self.degree != polynomial_2.degree:
|
||||
return False
|
||||
|
||||
for i in range(self.degree + 1):
|
||||
if self.coefficients[i] != polynomial_2.coefficients[i]:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def __ne__(self, polynomial_2: object) -> bool:
|
||||
"""
|
||||
Checks if two polynomials are not equal.
|
||||
>>> p = Polynomial(2, [1, 2, 3])
|
||||
>>> q = Polynomial(2, [1, 2, 3])
|
||||
>>> p != q
|
||||
False
|
||||
"""
|
||||
return not self.__eq__(polynomial_2)
|
Loading…
Reference in New Issue
Block a user