Add solution for the Euler project problem 95. (#12669)

* Add documentation and tests for the Euler project problem 95 solution.

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

* Update sol1.py

---------

Co-authored-by: Maxim Smolskiy <mithridatus@mail.ru>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Mindaugas 2025-05-10 19:13:07 +08:00 committed by GitHub
parent d9d56b1046
commit b720f24b89
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 164 additions and 0 deletions

View File

View File

@ -0,0 +1,164 @@
"""
Project Euler Problem 95: https://projecteuler.net/problem=95
Amicable Chains
The proper divisors of a number are all the divisors excluding the number itself.
For example, the proper divisors of 28 are 1, 2, 4, 7, and 14.
As the sum of these divisors is equal to 28, we call it a perfect number.
Interestingly the sum of the proper divisors of 220 is 284 and
the sum of the proper divisors of 284 is 220, forming a chain of two numbers.
For this reason, 220 and 284 are called an amicable pair.
Perhaps less well known are longer chains.
For example, starting with 12496, we form a chain of five numbers:
12496 -> 14288 -> 15472 -> 14536 -> 14264 (-> 12496 -> ...)
Since this chain returns to its starting point, it is called an amicable chain.
Find the smallest member of the longest amicable chain with
no element exceeding one million.
Solution is doing the following:
- Get relevant prime numbers
- Iterate over product combination of prime numbers to generate all non-prime
numbers up to max number, by keeping track of prime factors
- Calculate the sum of factors for each number
- Iterate over found some factors to find longest chain
"""
from math import isqrt
def generate_primes(max_num: int) -> list[int]:
"""
Calculates the list of primes up to and including `max_num`.
>>> generate_primes(6)
[2, 3, 5]
"""
are_primes = [True] * (max_num + 1)
are_primes[0] = are_primes[1] = False
for i in range(2, isqrt(max_num) + 1):
if are_primes[i]:
for j in range(i * i, max_num + 1, i):
are_primes[j] = False
return [prime for prime, is_prime in enumerate(are_primes) if is_prime]
def multiply(
chain: list[int],
primes: list[int],
min_prime_idx: int,
prev_num: int,
max_num: int,
prev_sum: int,
primes_degrees: dict[int, int],
) -> None:
"""
Run over all prime combinations to generate non-prime numbers.
>>> chain = [0] * 3
>>> primes_degrees = {}
>>> multiply(
... chain=chain,
... primes=[2],
... min_prime_idx=0,
... prev_num=1,
... max_num=2,
... prev_sum=0,
... primes_degrees=primes_degrees,
... )
>>> chain
[0, 0, 1]
>>> primes_degrees
{2: 1}
"""
min_prime = primes[min_prime_idx]
num = prev_num * min_prime
min_prime_degree = primes_degrees.get(min_prime, 0)
min_prime_degree += 1
primes_degrees[min_prime] = min_prime_degree
new_sum = prev_sum * min_prime + (prev_sum + prev_num) * (min_prime - 1) // (
min_prime**min_prime_degree - 1
)
chain[num] = new_sum
for prime_idx in range(min_prime_idx, len(primes)):
if primes[prime_idx] * num > max_num:
break
multiply(
chain=chain,
primes=primes,
min_prime_idx=prime_idx,
prev_num=num,
max_num=max_num,
prev_sum=new_sum,
primes_degrees=primes_degrees.copy(),
)
def find_longest_chain(chain: list[int], max_num: int) -> int:
"""
Finds the smallest element of longest chain
>>> find_longest_chain(chain=[0, 0, 0, 0, 0, 0, 6], max_num=6)
6
"""
max_len = 0
min_elem = 0
for start in range(2, len(chain)):
visited = {start}
elem = chain[start]
length = 1
while elem > 1 and elem <= max_num and elem not in visited:
visited.add(elem)
elem = chain[elem]
length += 1
if elem == start and length > max_len:
max_len = length
min_elem = start
return min_elem
def solution(max_num: int = 1000000) -> int:
"""
Runs the calculation for numbers <= `max_num`.
>>> solution(10)
6
>>> solution(200000)
12496
"""
primes = generate_primes(max_num)
chain = [0] * (max_num + 1)
for prime_idx, prime in enumerate(primes):
if prime**2 > max_num:
break
multiply(
chain=chain,
primes=primes,
min_prime_idx=prime_idx,
prev_num=1,
max_num=max_num,
prev_sum=0,
primes_degrees={},
)
return find_longest_chain(chain=chain, max_num=max_num)
if __name__ == "__main__":
print(f"{solution() = }")