mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
added ridge regression
This commit is contained in:
parent
1cb79bc72a
commit
b72320b402
|
@ -1,112 +1,57 @@
|
|||
import numpy as np
|
||||
|
||||
"""# Ridge Regression Class
|
||||
class RidgeRegression:
|
||||
def __init__(self, learning_rate=0.01, num_iterations=1000, regularization_param=0.1):
|
||||
self.learning_rate = learning_rate
|
||||
self.num_iterations = num_iterations
|
||||
self.regularization_param = regularization_param
|
||||
self.weights = None
|
||||
self.bias = None
|
||||
|
||||
def fit(self, X, y):
|
||||
n_samples, n_features = X.shape
|
||||
|
||||
# initializing weights and bias
|
||||
self.weights = np.zeros(n_features)
|
||||
self.bias = 0
|
||||
|
||||
# gradient descent
|
||||
for _ in range(self.num_iterations):
|
||||
y_predicted = np.dot(X, self.weights) + self.bias
|
||||
|
||||
# gradients for weights and bias
|
||||
dw = (1/n_samples) * np.dot(X.T, (y_predicted - y)) + (self.regularization_param / n_samples) * self.weights
|
||||
db = (1/n_samples) * np.sum(y_predicted - y)
|
||||
|
||||
# updating weights and bias
|
||||
self.weights -= self.learning_rate * dw
|
||||
self.bias -= self.learning_rate * db
|
||||
|
||||
def predict(self, X):
|
||||
return np.dot(X, self.weights) + self.bias
|
||||
|
||||
def mean_absolute_error(self, y_true, y_pred):
|
||||
return np.mean(np.abs(y_true - y_pred))
|
||||
|
||||
# Load Data Function
|
||||
def load_data(file_path):
|
||||
data = []
|
||||
with open(file_path, 'r') as file:
|
||||
for line in file.readlines()[1:]:
|
||||
features = line.strip().split(',')
|
||||
data.append([float(f) for f in features])
|
||||
return np.array(data)
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
|
||||
data = load_data('ADRvsRating.csv')
|
||||
X = data[:, 0].reshape(-1, 1) # independent features
|
||||
y = data[:, 1] # dependent variable
|
||||
|
||||
# initializing and training Ridge Regression model
|
||||
model = RidgeRegression(learning_rate=0.001, num_iterations=1000, regularization_param=0.1)
|
||||
model.fit(X, y)
|
||||
|
||||
# predictions
|
||||
predictions = model.predict(X)
|
||||
|
||||
# mean absolute error
|
||||
mae = model.mean_absolute_error(y, predictions)
|
||||
print(f"Mean Absolute Error: {mae}")
|
||||
|
||||
# final output weights and bias
|
||||
print(f"Optimized Weights: {model.weights}")
|
||||
print(f"Bias: {model.bias}")"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
class RidgeRegression:
|
||||
def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000):
|
||||
def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000):
|
||||
self.alpha = alpha
|
||||
self.lambda_ = lambda_
|
||||
self.iterations = iterations
|
||||
self.regularization_param = regularization_param
|
||||
self.num_iterations = num_iterations
|
||||
self.theta = None
|
||||
|
||||
|
||||
def feature_scaling(self, X):
|
||||
mean = np.mean(X, axis=0)
|
||||
std = np.std(X, axis=0)
|
||||
|
||||
# avoid division by zero for constant features (std = 0)
|
||||
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
||||
|
||||
X_scaled = (X - mean) / std
|
||||
return X_scaled, mean, std
|
||||
|
||||
|
||||
def fit(self, X, y):
|
||||
X_scaled, mean, std = self.feature_scaling(X)
|
||||
m, n = X_scaled.shape
|
||||
self.theta = np.zeros(n) # initializing weights to zeros
|
||||
for i in range(self.iterations):
|
||||
|
||||
for i in range(self.num_iterations):
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
|
||||
# computing gradient with L2 regularization
|
||||
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||
gradient = (X_scaled.T.dot(error) + self.regularization_param * self.theta) / m
|
||||
self.theta -= self.alpha * gradient # updating weights
|
||||
|
||||
|
||||
def predict(self, X):
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
return X_scaled.dot(self.theta)
|
||||
|
||||
|
||||
def compute_cost(self, X, y):
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
m = len(y)
|
||||
|
||||
predictions = X_scaled.dot(self.theta)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
self.lambda_ / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (self.regularization_param / (2 * m)) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
|
||||
def mean_absolute_error(self, y_true, y_pred):
|
||||
return np.mean(np.abs(y_true - y_pred))
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
df = pd.read_csv("ADRvsRating.csv")
|
||||
|
@ -118,7 +63,7 @@ if __name__ == "__main__":
|
|||
X = np.c_[np.ones(X.shape[0]), X]
|
||||
|
||||
# initialize and train the Ridge Regression model
|
||||
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
||||
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||
model.fit(X, y)
|
||||
|
||||
# predictions
|
||||
|
|
Loading…
Reference in New Issue
Block a user