mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Harmonic Geometric and P-Series Added (#1633)
* Harmonic Geometric and P-Series Added * Editing comments * Update and rename series/Geometric_Series.py to maths/series/geometric_series.py * Update and rename series/Harmonic_Series.py to maths/series/harmonic_series.py * Update and rename series/P_Series.py to maths/series/p_series.py
This commit is contained in:
parent
d385472c6f
commit
bc5b92f7f9
63
maths/series/geometric_series.py
Normal file
63
maths/series/geometric_series.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
"""
|
||||
This is a pure Python implementation of the Geometric Series algorithm
|
||||
https://en.wikipedia.org/wiki/Geometric_series
|
||||
|
||||
Run the doctests with the following command:
|
||||
python3 -m doctest -v geometric_series.py
|
||||
or
|
||||
python -m doctest -v geometric_series.py
|
||||
For manual testing run:
|
||||
python3 geometric_series.py
|
||||
"""
|
||||
|
||||
|
||||
def geometric_series(nth_term: int, start_term_a: int, common_ratio_r: int) -> list:
|
||||
"""Pure Python implementation of Geometric Series algorithm
|
||||
:param nth_term: The last term (nth term of Geometric Series)
|
||||
:param start_term_a : The first term of Geometric Series
|
||||
:param common_ratio_r : The common ratio between all the terms
|
||||
:return: The Geometric Series starting from first term a and multiple of common
|
||||
ration with first term with increase in power till last term (nth term)
|
||||
Examples:
|
||||
>>> geometric_series(4, 2, 2)
|
||||
[2, '4.0', '8.0', '16.0']
|
||||
>>> geometric_series(4.0, 2.0, 2.0)
|
||||
[2.0, '4.0', '8.0', '16.0']
|
||||
>>> geometric_series(4.1, 2.1, 2.1)
|
||||
[2.1, '4.41', '9.261000000000001', '19.448100000000004']
|
||||
>>> geometric_series(4, 2, -2)
|
||||
[2, '-4.0', '8.0', '-16.0']
|
||||
>>> geometric_series(4, -2, 2)
|
||||
[-2, '-4.0', '-8.0', '-16.0']
|
||||
>>> geometric_series(-4, 2, 2)
|
||||
[]
|
||||
>>> geometric_series(0, 100, 500)
|
||||
[]
|
||||
>>> geometric_series(1, 1, 1)
|
||||
[1]
|
||||
>>> geometric_series(0, 0, 0)
|
||||
[]
|
||||
"""
|
||||
if "" in (nth_term, start_term_a, common_ratio_r):
|
||||
return ""
|
||||
series = []
|
||||
power = 1
|
||||
multiple = common_ratio_r
|
||||
for _ in range(int(nth_term)):
|
||||
if series == []:
|
||||
series.append(start_term_a)
|
||||
else:
|
||||
power += 1
|
||||
series.append(str(float(start_term_a) * float(multiple)))
|
||||
multiple = pow(float(common_ratio_r), power)
|
||||
return series
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
nth_term = input("Enter the last number (n term) of the Geometric Series")
|
||||
start_term_a = input("Enter the starting term (a) of the Geometric Series")
|
||||
common_ratio_r = input(
|
||||
"Enter the common ratio between two terms (r) of the Geometric Series"
|
||||
)
|
||||
print("Formula of Geometric Series => a + ar + ar^2 ... +ar^n")
|
||||
print(geometric_series(nth_term, start_term_a, common_ratio_r))
|
46
maths/series/harmonic_series.py
Normal file
46
maths/series/harmonic_series.py
Normal file
|
@ -0,0 +1,46 @@
|
|||
"""
|
||||
This is a pure Python implementation of the Harmonic Series algorithm
|
||||
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v harmonic_series.py
|
||||
or
|
||||
python3 -m doctest -v harmonic_series.py
|
||||
|
||||
For manual testing run:
|
||||
python3 harmonic_series.py
|
||||
"""
|
||||
|
||||
|
||||
def harmonic_series(n_term: str) -> list:
|
||||
"""Pure Python implementation of Harmonic Series algorithm
|
||||
|
||||
:param n_term: The last (nth) term of Harmonic Series
|
||||
:return: The Harmonic Series starting from 1 to last (nth) term
|
||||
|
||||
Examples:
|
||||
>>> harmonic_series(5)
|
||||
['1', '1/2', '1/3', '1/4', '1/5']
|
||||
>>> harmonic_series(5.0)
|
||||
['1', '1/2', '1/3', '1/4', '1/5']
|
||||
>>> harmonic_series(5.1)
|
||||
['1', '1/2', '1/3', '1/4', '1/5']
|
||||
>>> harmonic_series(-5)
|
||||
[]
|
||||
>>> harmonic_series(0)
|
||||
[]
|
||||
>>> harmonic_series(1)
|
||||
['1']
|
||||
"""
|
||||
if n_term == "":
|
||||
return n_term
|
||||
series = []
|
||||
for temp in range(int(n_term)):
|
||||
series.append(f"1/{temp + 1}" if series else "1")
|
||||
return series
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
nth_term = input("Enter the last number (nth term) of the Harmonic Series")
|
||||
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
|
||||
print(harmonic_series(nth_term))
|
48
maths/series/p_series.py
Normal file
48
maths/series/p_series.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
"""
|
||||
This is a pure Python implementation of the P-Series algorithm
|
||||
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#P-series
|
||||
|
||||
For doctests run following command:
|
||||
python -m doctest -v p_series.py
|
||||
or
|
||||
python3 -m doctest -v p_series.py
|
||||
|
||||
For manual testing run:
|
||||
python3 p_series.py
|
||||
"""
|
||||
|
||||
|
||||
def p_series(nth_term: int, power: int) -> list:
|
||||
"""Pure Python implementation of P-Series algorithm
|
||||
|
||||
:return: The P-Series starting from 1 to last (nth) term
|
||||
|
||||
Examples:
|
||||
>>> p_series(5, 2)
|
||||
[1, '1/4', '1/9', '1/16', '1/25']
|
||||
>>> p_series(-5, 2)
|
||||
[]
|
||||
>>> p_series(5, -2)
|
||||
[1, '1/0.25', '1/0.1111111111111111', '1/0.0625', '1/0.04']
|
||||
>>> p_series("", 1000)
|
||||
''
|
||||
>>> p_series(0, 0)
|
||||
[]
|
||||
>>> p_series(1, 1)
|
||||
[1]
|
||||
"""
|
||||
if nth_term == "":
|
||||
return nth_term
|
||||
nth_term = int(nth_term)
|
||||
power = int(power)
|
||||
series = []
|
||||
for temp in range(int(nth_term)):
|
||||
series.append(f"1/{pow(temp + 1, int(power))}" if series else 1)
|
||||
return series
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
nth_term = input("Enter the last number (nth term) of the P-Series")
|
||||
power = input("Enter the power for P-Series")
|
||||
print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p")
|
||||
print(p_series(nth_term, power))
|
Loading…
Reference in New Issue
Block a user