mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5f95d6f805
commit
bc8df6de31
|
@ -16,7 +16,7 @@ repos:
|
|||
- id: auto-walrus
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.2
|
||||
rev: v0.3.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
- id: ruff-format
|
||||
|
@ -47,7 +47,7 @@ repos:
|
|||
- id: validate-pyproject
|
||||
|
||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||
rev: v1.8.0
|
||||
rev: v1.9.0
|
||||
hooks:
|
||||
- id: mypy
|
||||
args:
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
"""
|
||||
In this problem, we want to determine all possible combinations of k
|
||||
numbers out of 1 ... n. We use backtracking to solve this problem.
|
||||
In this problem, we want to determine all possible combinations of k
|
||||
numbers out of 1 ... n. We use backtracking to solve this problem.
|
||||
|
||||
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!))),
|
||||
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!))),
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from itertools import combinations
|
||||
|
|
|
@ -1,10 +1,11 @@
|
|||
"""
|
||||
In this problem, we want to determine all possible permutations
|
||||
of the given sequence. We use backtracking to solve this problem.
|
||||
In this problem, we want to determine all possible permutations
|
||||
of the given sequence. We use backtracking to solve this problem.
|
||||
|
||||
Time complexity: O(n! * n),
|
||||
where n denotes the length of the given sequence.
|
||||
Time complexity: O(n! * n),
|
||||
where n denotes the length of the given sequence.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ of the given sequence. We use backtracking to solve this problem.
|
|||
Time complexity: O(2^n),
|
||||
where n denotes the length of the given sequence.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
"""
|
||||
Graph Coloring also called "m coloring problem"
|
||||
consists of coloring a given graph with at most m colors
|
||||
such that no adjacent vertices are assigned the same color
|
||||
Graph Coloring also called "m coloring problem"
|
||||
consists of coloring a given graph with at most m colors
|
||||
such that no adjacent vertices are assigned the same color
|
||||
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
|
||||
"""
|
||||
|
||||
|
||||
|
|
|
@ -1,10 +1,10 @@
|
|||
"""
|
||||
A Hamiltonian cycle (Hamiltonian circuit) is a graph cycle
|
||||
through a graph that visits each node exactly once.
|
||||
Determining whether such paths and cycles exist in graphs
|
||||
is the 'Hamiltonian path problem', which is NP-complete.
|
||||
A Hamiltonian cycle (Hamiltonian circuit) is a graph cycle
|
||||
through a graph that visits each node exactly once.
|
||||
Determining whether such paths and cycles exist in graphs
|
||||
is the 'Hamiltonian path problem', which is NP-complete.
|
||||
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path
|
||||
"""
|
||||
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ if move is of maximizer return true else false
|
|||
leaves of game tree is stored in scores[]
|
||||
height is maximum height of Game tree
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
|
|
@ -1,12 +1,13 @@
|
|||
"""
|
||||
|
||||
The nqueens problem is of placing N queens on a N * N
|
||||
chess board such that no queen can attack any other queens placed
|
||||
on that chess board.
|
||||
This means that one queen cannot have any other queen on its horizontal, vertical and
|
||||
diagonal lines.
|
||||
The nqueens problem is of placing N queens on a N * N
|
||||
chess board such that no queen can attack any other queens placed
|
||||
on that chess board.
|
||||
This means that one queen cannot have any other queen on its horizontal, vertical and
|
||||
diagonal lines.
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
solution = []
|
||||
|
|
|
@ -75,6 +75,7 @@ Applying these two formulas we can check if a queen in some position is being at
|
|||
for another one or vice versa.
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@ function on the next column to see if it returns True. if yes, we
|
|||
have solved the puzzle. else, we backtrack and place another number
|
||||
in that cell and repeat this process.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
Matrix = list[list[int]]
|
||||
|
|
|
@ -1,11 +1,12 @@
|
|||
"""
|
||||
The sum-of-subsetsproblem states that a set of non-negative integers, and a
|
||||
value M, determine all possible subsets of the given set whose summation sum
|
||||
equal to given M.
|
||||
The sum-of-subsetsproblem states that a set of non-negative integers, and a
|
||||
value M, determine all possible subsets of the given set whose summation sum
|
||||
equal to given M.
|
||||
|
||||
Summation of the chosen numbers must be equal to given number M and one number
|
||||
can be used only once.
|
||||
Summation of the chosen numbers must be equal to given number M and one number
|
||||
can be used only once.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@ Following is the truth table of a NOR Gate:
|
|||
Code provided by Akshaj Vishwanathan
|
||||
https://www.geeksforgeeks.org/logic-gates-in-python
|
||||
"""
|
||||
|
||||
from collections.abc import Callable
|
||||
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Conway's Game of Life implemented in Python.
|
||||
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from PIL import Image
|
||||
|
|
|
@ -26,7 +26,8 @@ Game-Of-Life Rules:
|
|||
4.
|
||||
Any dead cell with exactly three live neighbours be-
|
||||
comes a live cell, as if by reproduction.
|
||||
"""
|
||||
"""
|
||||
|
||||
import random
|
||||
import sys
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@ Examples for doctest:
|
|||
>>> simulate(construct_highway(5, 2, -2), 3, 0, 2)
|
||||
[[0, -1, 0, -1, 0], [0, -1, 0, -1, -1], [0, -1, -1, 1, -1], [-1, 1, -1, 0, -1]]
|
||||
"""
|
||||
|
||||
from random import randint, random
|
||||
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ corresponding to the character's position in the alphabet.
|
|||
https://www.dcode.fr/letter-number-cipher
|
||||
http://bestcodes.weebly.com/a1z26.html
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
""" https://en.wikipedia.org/wiki/Atbash """
|
||||
"""https://en.wikipedia.org/wiki/Atbash"""
|
||||
|
||||
import string
|
||||
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@ Base32 encoding and decoding
|
|||
|
||||
https://en.wikipedia.org/wiki/Base32
|
||||
"""
|
||||
|
||||
B32_CHARSET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"
|
||||
|
||||
|
||||
|
|
|
@ -14,6 +14,7 @@ Module includes:
|
|||
|
||||
Created by TrapinchO
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
RotorPositionT = tuple[int, int, int]
|
||||
|
|
|
@ -8,6 +8,7 @@ making it more secure than substitution ciphers.
|
|||
|
||||
http://practicalcryptography.com/ciphers/fractionated-morse-cipher/
|
||||
"""
|
||||
|
||||
import string
|
||||
|
||||
MORSE_CODE_DICT = {
|
||||
|
|
|
@ -35,6 +35,7 @@ https://www.youtube.com/watch?v=kfmNeskzs2o
|
|||
https://www.youtube.com/watch?v=4RhLNDqcjpA
|
||||
|
||||
"""
|
||||
|
||||
import string
|
||||
|
||||
import numpy
|
||||
|
|
|
@ -7,6 +7,7 @@ determine the order of character rearrangement.
|
|||
|
||||
For more info: https://www.nku.edu/~christensen/1402%20permutation%20ciphers.pdf
|
||||
"""
|
||||
|
||||
import random
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
""" https://en.wikipedia.org/wiki/Rail_fence_cipher """
|
||||
"""https://en.wikipedia.org/wiki/Rail_fence_cipher"""
|
||||
|
||||
|
||||
def encrypt(input_string: str, key: int) -> str:
|
||||
|
|
|
@ -7,6 +7,7 @@ Source: on page 3 of https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
|
|||
More readable source: https://www.di-mgt.com.au/rsa_factorize_n.html
|
||||
large number can take minutes to factor, therefore are not included in doctest.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
|
|
@ -1,21 +1,22 @@
|
|||
"""
|
||||
author: Christian Bender
|
||||
date: 21.12.2017
|
||||
class: XORCipher
|
||||
author: Christian Bender
|
||||
date: 21.12.2017
|
||||
class: XORCipher
|
||||
|
||||
This class implements the XOR-cipher algorithm and provides
|
||||
some useful methods for encrypting and decrypting strings and
|
||||
files.
|
||||
This class implements the XOR-cipher algorithm and provides
|
||||
some useful methods for encrypting and decrypting strings and
|
||||
files.
|
||||
|
||||
Overview about methods
|
||||
Overview about methods
|
||||
|
||||
- encrypt : list of char
|
||||
- decrypt : list of char
|
||||
- encrypt_string : str
|
||||
- decrypt_string : str
|
||||
- encrypt_file : boolean
|
||||
- decrypt_file : boolean
|
||||
- encrypt : list of char
|
||||
- decrypt : list of char
|
||||
- encrypt_string : str
|
||||
- decrypt_string : str
|
||||
- encrypt_file : boolean
|
||||
- decrypt_file : boolean
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ without needing to store any additional data except the position of the first
|
|||
original character. The BWT is thus a "free" method of improving the efficiency
|
||||
of text compression algorithms, costing only some extra computation.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TypedDict
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
One of the several implementations of Lempel–Ziv–Welch compression algorithm
|
||||
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
|
||||
One of the several implementations of Lempel–Ziv–Welch compression algorithm
|
||||
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
|
||||
"""
|
||||
|
||||
import math
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
One of the several implementations of Lempel–Ziv–Welch decompression algorithm
|
||||
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
|
||||
One of the several implementations of Lempel–Ziv–Welch decompression algorithm
|
||||
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
|
||||
"""
|
||||
|
||||
import math
|
||||
|
|
|
@ -28,7 +28,6 @@ Sources:
|
|||
en.wikipedia.org/wiki/LZ77_and_LZ78
|
||||
"""
|
||||
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
__version__ = "0.1"
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
https://en.wikipedia.org/wiki/Image_texture
|
||||
https://en.wikipedia.org/wiki/Co-occurrence_matrix#Application_to_image_analysis
|
||||
"""
|
||||
|
||||
import imageio.v2 as imageio
|
||||
import numpy as np
|
||||
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
"""
|
||||
The Horn-Schunck method estimates the optical flow for every single pixel of
|
||||
a sequence of images.
|
||||
It works by assuming brightness constancy between two consecutive frames
|
||||
and smoothness in the optical flow.
|
||||
The Horn-Schunck method estimates the optical flow for every single pixel of
|
||||
a sequence of images.
|
||||
It works by assuming brightness constancy between two consecutive frames
|
||||
and smoothness in the optical flow.
|
||||
|
||||
Useful resources:
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
|
||||
Paper: http://image.diku.dk/imagecanon/material/HornSchunckOptical_Flow.pdf
|
||||
Useful resources:
|
||||
Wikipedia: https://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
|
||||
Paper: http://image.diku.dk/imagecanon/material/HornSchunckOptical_Flow.pdf
|
||||
"""
|
||||
|
||||
from typing import SupportsIndex
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
""" Convert Base 10 (Decimal) Values to Hexadecimal Representations """
|
||||
"""Convert Base 10 (Decimal) Values to Hexadecimal Representations"""
|
||||
|
||||
# set decimal value for each hexadecimal digit
|
||||
values = {
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Convert International System of Units (SI) and Binary prefixes
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import Enum
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
""" Convert between different units of temperature """
|
||||
"""Convert between different units of temperature"""
|
||||
|
||||
|
||||
def celsius_to_fahrenheit(celsius: float, ndigits: int = 2) -> float:
|
||||
|
|
|
@ -6,6 +6,7 @@ elements whose sum is equal to req_sum.
|
|||
|
||||
https://practice.geeksforgeeks.org/problems/count-pairs-with-given-sum5022/0
|
||||
"""
|
||||
|
||||
from itertools import combinations
|
||||
|
||||
|
||||
|
|
|
@ -1,15 +1,16 @@
|
|||
"""
|
||||
Sparse table is a data structure that allows answering range queries on
|
||||
a static number list, i.e. the elements do not change throughout all the queries.
|
||||
Sparse table is a data structure that allows answering range queries on
|
||||
a static number list, i.e. the elements do not change throughout all the queries.
|
||||
|
||||
The implementation below will solve the problem of Range Minimum Query:
|
||||
Finding the minimum value of a subset [L..R] of a static number list.
|
||||
The implementation below will solve the problem of Range Minimum Query:
|
||||
Finding the minimum value of a subset [L..R] of a static number list.
|
||||
|
||||
Overall time complexity: O(nlogn)
|
||||
Overall space complexity: O(nlogn)
|
||||
Overall time complexity: O(nlogn)
|
||||
Overall space complexity: O(nlogn)
|
||||
|
||||
Wikipedia link: https://en.wikipedia.org/wiki/Range_minimum_query
|
||||
Wikipedia link: https://en.wikipedia.org/wiki/Range_minimum_query
|
||||
"""
|
||||
|
||||
from math import log2
|
||||
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@ Please do not modify this file! It is published at https://norvig.com/sudoku.ht
|
|||
only minimal changes to work with modern versions of Python. If you have improvements,
|
||||
please make them in a separate file.
|
||||
"""
|
||||
|
||||
import random
|
||||
import time
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ python3 -m doctest -v avl_tree.py
|
|||
For testing run:
|
||||
python avl_tree.py
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
|
|
@ -88,6 +88,7 @@ True
|
|||
>>> not t
|
||||
True
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterable, Iterator
|
||||
|
|
|
@ -7,6 +7,7 @@ python -m unittest binary_search_tree_recursive.py
|
|||
To run an example:
|
||||
python binary_search_tree_recursive.py
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import unittest
|
||||
|
|
|
@ -8,7 +8,6 @@ Python implementation:
|
|||
frames that could be in memory is `n`
|
||||
"""
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
The diameter/width of a tree is defined as the number of nodes on the longest path
|
||||
between two end nodes.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
|
|
@ -10,6 +10,7 @@ https://www.geeksforgeeks.org/flatten-a-binary-tree-into-linked-list
|
|||
Author: Arunkumar A
|
||||
Date: 04/09/2023
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@ https://bit.ly/46uB0a2
|
|||
Author : Arunkumar
|
||||
Date : 14th October 2023
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -13,6 +13,7 @@ If n is the number of nodes in the tree then:
|
|||
Runtime: O(n)
|
||||
Space: O(1)
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -3,6 +3,7 @@ Is a binary tree a sum tree where the value of every non-leaf node is equal to t
|
|||
of the values of its left and right subtrees?
|
||||
https://www.geeksforgeeks.org/check-if-a-given-binary-tree-is-sumtree
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -5,6 +5,7 @@ The rule for merging is that if two nodes overlap, then put the value sum of
|
|||
both nodes to the new value of the merged node. Otherwise, the NOT null node
|
||||
will be used as the node of new tree.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@ Given the root of a binary tree, mirror the tree, and return its root.
|
|||
|
||||
Leetcode problem reference: https://leetcode.com/problems/mirror-binary-tree/
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -35,6 +35,7 @@ https://www.geeksforgeeks.org/segment-tree-efficient-implementation/
|
|||
>>> st.query(0, 2)
|
||||
[1, 2, 3]
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Callable
|
||||
|
|
|
@ -6,6 +6,7 @@ We will use the formula: t(n) = SUMMATION(i = 1 to n)t(i-1)t(n-i)
|
|||
|
||||
Further details at Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
|
||||
"""
|
||||
|
||||
"""
|
||||
Our Contribution:
|
||||
Basically we Create the 2 function:
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
psf/black : true
|
||||
ruff : passed
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -3,6 +3,7 @@ Segment_tree creates a segment tree with a given array and function,
|
|||
allowing queries to be done later in log(N) time
|
||||
function takes 2 values and returns a same type value
|
||||
"""
|
||||
|
||||
from collections.abc import Sequence
|
||||
from queue import Queue
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@ Given the root of a binary tree, check whether it is a mirror of itself
|
|||
|
||||
Leetcode reference: https://leetcode.com/problems/symmetric-tree/
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
|
|
@ -7,6 +7,7 @@ such as the with segment trees or fenwick trees. You can read more about them he
|
|||
2. https://www.youtube.com/watch?v=4aSv9PcecDw&t=811s
|
||||
3. https://www.youtube.com/watch?v=CybAgVF-MMc&t=1178s
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
test_array = [2, 1, 4, 5, 6, 0, 8, 9, 1, 2, 0, 6, 4, 2, 0, 6, 5, 3, 2, 7]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
"""
|
||||
Disjoint set.
|
||||
Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
Disjoint set.
|
||||
Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
||||
"""
|
||||
|
||||
|
||||
|
|
|
@ -58,6 +58,7 @@ The probability decreases with the number of bits in the bitarray.
|
|||
>>> bloom.bitstring
|
||||
'01100101'
|
||||
"""
|
||||
|
||||
from hashlib import md5, sha256
|
||||
|
||||
HASH_FUNCTIONS = (sha256, md5)
|
||||
|
|
|
@ -11,6 +11,7 @@ Where hash1() and hash2() are hash functions and TABLE_SIZE is size of hash tabl
|
|||
|
||||
Reference: https://en.wikipedia.org/wiki/Double_hashing
|
||||
"""
|
||||
|
||||
from .hash_table import HashTable
|
||||
from .number_theory.prime_numbers import is_prime, next_prime
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ Another hash map implementation, with a good explanation.
|
|||
Modern Dictionaries by Raymond Hettinger
|
||||
https://www.youtube.com/watch?v=p33CVV29OG8
|
||||
"""
|
||||
|
||||
from collections.abc import Iterator, MutableMapping
|
||||
from dataclasses import dataclass
|
||||
from typing import Generic, TypeVar
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
module to operations with prime numbers
|
||||
module to operations with prime numbers
|
||||
"""
|
||||
|
||||
import math
|
||||
|
|
|
@ -5,6 +5,7 @@ Nodes contain data and also may link to other nodes:
|
|||
head node gives us access of the complete list
|
||||
- Last node: points to null
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Algorithm that merges two sorted linked lists into one sorted linked list.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterable, Iterator
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Based on "Skip Lists: A Probabilistic Alternative to Balanced Trees" by William Pugh
|
||||
https://epaperpress.com/sortsearch/download/skiplist.pdf
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from random import random
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Implementation of double ended queue.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterable
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
""" A Queue using a linked list like structure """
|
||||
"""A Queue using a linked list like structure"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
"""Queue represented by a pseudo stack (represented by a list with pop and append)"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ RULE 5: When the entire infix expression has been scanned, the value left on
|
|||
|
||||
NOTE: It only works with whole numbers.
|
||||
"""
|
||||
|
||||
__author__ = "Alexander Joslin"
|
||||
|
||||
import operator as op
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
""" A Stack using a linked list like structure """
|
||||
"""A Stack using a linked list like structure"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Implemented an algorithm using opencv to convert a colored image into its negative
|
||||
Implemented an algorithm using opencv to convert a colored image into its negative
|
||||
"""
|
||||
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Implementation Burke's algorithm (dithering)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@ Inputs:
|
|||
Output:
|
||||
img:A 2d zero padded image with values in between 0 and 1
|
||||
"""
|
||||
|
||||
import math
|
||||
import sys
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Implementation of gaussian filter algorithm
|
||||
"""
|
||||
|
||||
from itertools import product
|
||||
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Implementation of median filter algorithm
|
||||
"""
|
||||
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
|
||||
from numpy import divide, int8, multiply, ravel, sort, zeros_like
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@ Created on Fri Sep 28 15:22:29 2018
|
|||
|
||||
@author: Binish125
|
||||
"""
|
||||
|
||||
import copy
|
||||
import os
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
""" Multiple image resizing techniques """
|
||||
"""Multiple image resizing techniques"""
|
||||
|
||||
import numpy as np
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
Implemented an algorithm using opencv to tone an image with sepia technique
|
||||
Implemented an algorithm using opencv to tone an image with sepia technique
|
||||
"""
|
||||
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
PyTest's for Digital Image Processing
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread
|
||||
from numpy import array, uint8
|
||||
|
|
|
@ -12,6 +12,7 @@ There are other several other algorithms for the convex hull problem
|
|||
which have not been implemented here, yet.
|
||||
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Iterable
|
||||
|
|
|
@ -8,6 +8,7 @@ This is a divide and conquer algorithm that can find a solution in O(n) time.
|
|||
For more information of this algorithm:
|
||||
https://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/08/Small08.pdf
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from random import choice
|
||||
|
|
|
@ -6,6 +6,7 @@ maximum sum within a given array of numbers. For example, given the array
|
|||
|
||||
This divide-and-conquer algorithm finds the maximum subarray in O(n log n) time.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import time
|
||||
|
|
|
@ -7,6 +7,7 @@ to find the maximum of the array.
|
|||
(From Kleinberg and Tardos. Algorithm Design.
|
||||
Addison Wesley 2006: Chapter 5 Solved Exercise 1)
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
Program to list all the ways a target string can be
|
||||
constructed from the given list of substrings
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ We have N tasks and M people. Each person in M can do only certain of these task
|
|||
a person can do only one task and a task is performed only by one person.
|
||||
Find the total no of ways in which the tasks can be distributed.
|
||||
"""
|
||||
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
This program calculates the nth Fibonacci number in O(log(n)).
|
||||
It's possible to calculate F(1_000_000) in less than a second.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import sys
|
||||
|
|
|
@ -5,6 +5,7 @@ You are given a bitmask m and you want to efficiently iterate through all of
|
|||
its submasks. The mask s is submask of m if only bits that were included in
|
||||
bitmask are set
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ return it.
|
|||
Example: [10, 22, 9, 33, 21, 50, 41, 60, 80] as input will return
|
||||
[10, 22, 33, 41, 60, 80] as output
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
|
|
@ -38,6 +38,7 @@ Example input:
|
|||
arr = [40, 20, 30, 10, 30]
|
||||
output: 26000
|
||||
"""
|
||||
|
||||
from collections.abc import Iterator
|
||||
from contextlib import contextmanager
|
||||
from functools import cache
|
||||
|
|
|
@ -9,6 +9,7 @@ subarray sum problem in O(n) time and O(1) space.
|
|||
|
||||
Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem
|
||||
"""
|
||||
|
||||
from collections.abc import Sequence
|
||||
|
||||
|
||||
|
|
|
@ -14,6 +14,7 @@ represented as τ (tau). By using this RC-timeconstant we can find the voltage
|
|||
time 't' from the initiation of charging a capacitor with the help of the exponential
|
||||
function containing RC. Both at charging and discharging of a capacitor.
|
||||
"""
|
||||
|
||||
from math import exp # value of exp = 2.718281828459…
|
||||
|
||||
|
||||
|
|
|
@ -25,6 +25,7 @@ when inductor is connected across 'AC' potential source. It starts to store the
|
|||
in its 'magnetic field'.with the help 'RL-time-constant' we can find current at any time
|
||||
in inductor while it is charging.
|
||||
"""
|
||||
|
||||
from math import exp # value of exp = 2.718281828459…
|
||||
|
||||
|
||||
|
|
|
@ -58,6 +58,7 @@ Sources :
|
|||
https://learn.parallax.com/support/reference/resistor-color-codes
|
||||
https://byjus.com/physics/resistor-colour-codes/
|
||||
"""
|
||||
|
||||
valid_colors: list = [
|
||||
"Black",
|
||||
"Brown",
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
"""
|
||||
Calculate the exponential moving average (EMA) on the series of stock prices.
|
||||
Wikipedia Reference: https://en.wikipedia.org/wiki/Exponential_smoothing
|
||||
https://www.investopedia.com/terms/e/ema.asp#toc-what-is-an-exponential
|
||||
-moving-average-ema
|
||||
Calculate the exponential moving average (EMA) on the series of stock prices.
|
||||
Wikipedia Reference: https://en.wikipedia.org/wiki/Exponential_smoothing
|
||||
https://www.investopedia.com/terms/e/ema.asp#toc-what-is-an-exponential
|
||||
-moving-average-ema
|
||||
|
||||
Exponential moving average is used in finance to analyze changes stock prices.
|
||||
EMA is used in conjunction with Simple moving average (SMA), EMA reacts to the
|
||||
changes in the value quicker than SMA, which is one of the advantages of using EMA.
|
||||
Exponential moving average is used in finance to analyze changes stock prices.
|
||||
EMA is used in conjunction with Simple moving average (SMA), EMA reacts to the
|
||||
changes in the value quicker than SMA, which is one of the advantages of using EMA.
|
||||
"""
|
||||
|
||||
from collections.abc import Iterator
|
||||
|
|
|
@ -6,6 +6,7 @@ and identify trends.
|
|||
|
||||
Reference: https://en.wikipedia.org/wiki/Moving_average
|
||||
"""
|
||||
|
||||
from collections.abc import Sequence
|
||||
|
||||
|
||||
|
|
|
@ -20,7 +20,6 @@ Requirements (pip):
|
|||
- numpy
|
||||
"""
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import matplotlib.pyplot as plt # type: ignore
|
||||
|
|
|
@ -15,7 +15,6 @@ the boundary of the Mandelbrot set a fractal curve.
|
|||
(see also https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set )
|
||||
"""
|
||||
|
||||
|
||||
import colorsys
|
||||
|
||||
from PIL import Image # type: ignore
|
||||
|
|
|
@ -22,6 +22,7 @@ Credits:
|
|||
This code was written by editing the code from
|
||||
https://www.riannetrujillo.com/blog/python-fractal/
|
||||
"""
|
||||
|
||||
import sys
|
||||
import turtle
|
||||
|
||||
|
|
|
@ -10,7 +10,6 @@ Reference: shorturl.at/exHM7
|
|||
|
||||
# Author: Swayam Singh (https://github.com/practice404)
|
||||
|
||||
|
||||
from queue import PriorityQueue
|
||||
from typing import Any
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
https://en.wikipedia.org/wiki/Bidirectional_search
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import time
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
"""
|
||||
https://en.wikipedia.org/wiki/Bidirectional_search
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import time
|
||||
|
|
|
@ -1,29 +1,30 @@
|
|||
"""Borůvka's algorithm.
|
||||
|
||||
Determines the minimum spanning tree (MST) of a graph using the Borůvka's algorithm.
|
||||
Borůvka's algorithm is a greedy algorithm for finding a minimum spanning tree in a
|
||||
connected graph, or a minimum spanning forest if a graph that is not connected.
|
||||
Determines the minimum spanning tree (MST) of a graph using the Borůvka's algorithm.
|
||||
Borůvka's algorithm is a greedy algorithm for finding a minimum spanning tree in a
|
||||
connected graph, or a minimum spanning forest if a graph that is not connected.
|
||||
|
||||
The time complexity of this algorithm is O(ELogV), where E represents the number
|
||||
of edges, while V represents the number of nodes.
|
||||
O(number_of_edges Log number_of_nodes)
|
||||
The time complexity of this algorithm is O(ELogV), where E represents the number
|
||||
of edges, while V represents the number of nodes.
|
||||
O(number_of_edges Log number_of_nodes)
|
||||
|
||||
The space complexity of this algorithm is O(V + E), since we have to keep a couple
|
||||
of lists whose sizes are equal to the number of nodes, as well as keep all the
|
||||
edges of a graph inside of the data structure itself.
|
||||
The space complexity of this algorithm is O(V + E), since we have to keep a couple
|
||||
of lists whose sizes are equal to the number of nodes, as well as keep all the
|
||||
edges of a graph inside of the data structure itself.
|
||||
|
||||
Borůvka's algorithm gives us pretty much the same result as other MST Algorithms -
|
||||
they all find the minimum spanning tree, and the time complexity is approximately
|
||||
the same.
|
||||
Borůvka's algorithm gives us pretty much the same result as other MST Algorithms -
|
||||
they all find the minimum spanning tree, and the time complexity is approximately
|
||||
the same.
|
||||
|
||||
One advantage that Borůvka's algorithm has compared to the alternatives is that it
|
||||
doesn't need to presort the edges or maintain a priority queue in order to find the
|
||||
minimum spanning tree.
|
||||
Even though that doesn't help its complexity, since it still passes the edges logE
|
||||
times, it is a bit simpler to code.
|
||||
One advantage that Borůvka's algorithm has compared to the alternatives is that it
|
||||
doesn't need to presort the edges or maintain a priority queue in order to find the
|
||||
minimum spanning tree.
|
||||
Even though that doesn't help its complexity, since it still passes the edges logE
|
||||
times, it is a bit simpler to code.
|
||||
|
||||
Details: https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
|
||||
Details: https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
""" Author: OMKAR PATHAK """
|
||||
"""Author: OMKAR PATHAK"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from queue import Queue
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user