mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
Added Mean Squared Logarithmic Error (MSLE) Loss Function (#10637)
* Added Mean Squared Logarithmic Error (MSLE) * Added Mean Squared Logarithmic Error (MSLE) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
289a4dd6d3
commit
bd3072b845
|
@ -0,0 +1,55 @@
|
||||||
|
"""
|
||||||
|
Mean Squared Logarithmic Error (MSLE) Loss Function
|
||||||
|
|
||||||
|
Description:
|
||||||
|
MSLE measures the mean squared logarithmic difference between
|
||||||
|
true values and predicted values, particularly useful when
|
||||||
|
dealing with regression problems involving skewed or large-value
|
||||||
|
targets. It is often used when the relative differences between
|
||||||
|
predicted and true values are more important than absolute
|
||||||
|
differences.
|
||||||
|
|
||||||
|
Formula:
|
||||||
|
MSLE = (1/n) * Σ(log(1 + y_true) - log(1 + y_pred))^2
|
||||||
|
|
||||||
|
Source:
|
||||||
|
(https://insideaiml.com/blog/MeanSquared-Logarithmic-Error-Loss-1035)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||||
|
"""
|
||||||
|
Calculate the Mean Squared Logarithmic Error (MSLE) between two arrays.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- y_true: The true values (ground truth).
|
||||||
|
- y_pred: The predicted values.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- msle: The Mean Squared Logarithmic Error between y_true and y_pred.
|
||||||
|
|
||||||
|
Example usage:
|
||||||
|
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||||
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||||
|
>>> mean_squared_logarithmic_error(true_values, predicted_values)
|
||||||
|
0.0030860877925181344
|
||||||
|
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||||
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||||
|
>>> mean_squared_logarithmic_error(true_labels, predicted_probs)
|
||||||
|
Traceback (most recent call last):
|
||||||
|
...
|
||||||
|
ValueError: Input arrays must have the same length.
|
||||||
|
"""
|
||||||
|
if len(y_true) != len(y_pred):
|
||||||
|
raise ValueError("Input arrays must have the same length.")
|
||||||
|
|
||||||
|
squared_logarithmic_errors = (np.log1p(y_true) - np.log1p(y_pred)) ** 2
|
||||||
|
return np.mean(squared_logarithmic_errors)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user