Re-design psnr.py code and change image names (#592)

* Change some Image File names & re-code the psnr algorithm (conserving both methods). Also Added new example.

* Selected psnr method and reformat some code from arithmetic_analysis
This commit is contained in:
Rafael García Cuéllar 2018-11-05 18:19:08 +01:00 committed by Harshil
parent 39912aed57
commit beafe3656f
10 changed files with 53 additions and 50 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

View File

Before

Width:  |  Height:  |  Size: 82 KiB

After

Width:  |  Height:  |  Size: 82 KiB

View File

@ -1,38 +1,39 @@
import numpy as np
"""
Peak signal-to-noise ratio - PSNR - https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
Soruce: https://tutorials.techonical.com/how-to-calculate-psnr-value-of-two-images-using-python/
"""
import math
import cv2
import numpy as np
def Representational(r,g,b):
return (0.299*r+0.287*g+0.114*b)
def psnr(original, contrast):
mse = np.mean((original - contrast) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 255.0
PSNR = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
return PSNR
def calculate(img):
b,g,r = cv2.split(img)
pixelAt = Representational(r,g,b)
return pixelAt
def main():
#Loading images (orignal image and compressed image)
orignal_image = cv2.imread('orignal_image.png',1)
compressed_image = cv2.imread('compressed_image.png',1)
# Loading images (original image and compressed image)
original = cv2.imread('original_image.png')
contrast = cv2.imread('compressed_image.png', 1)
#Getting image height and width
height,width = orignal_image.shape[:2]
original2 = cv2.imread('PSNR-example-base.png')
contrast2 = cv2.imread('PSNR-example-comp-10.jpg', 1)
orignalPixelAt = calculate(orignal_image)
compressedPixelAt = calculate(compressed_image)
# Value expected: 29.73dB
print("-- First Test --")
print(f"PSNR value is {psnr(original, contrast)} dB")
diff = orignalPixelAt - compressedPixelAt
error = np.sum(np.abs(diff) ** 2)
error = error/(height*width)
#MSR = error_sum/(height*width)
PSNR = -(10*math.log10(error/(255*255)))
print("PSNR value is {}".format(PSNR))
# # Value expected: 31.53dB (Wikipedia Example)
print("\n-- Second Test --")
print(f"PSNR value is {psnr(original2, contrast2)} dB")
if __name__ == '__main__':
main()
main()

View File

@ -15,7 +15,7 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us
return
else:
mid = (start + end) / 2
while abs(start - mid) > 0.0000001: # until we achieve precise equals to 10^-7
while abs(start - mid) > 10**-7: # until we achieve precise equals to 10^-7
if function(mid) == 0:
return mid
elif function(mid) * function(start) < 0:
@ -29,5 +29,5 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us
def f(x):
return math.pow(x, 3) - 2*x - 5
print(bisection(f, 1, 1000))
if __name__ == "__main__":
print(bisection(f, 1, 1000))

View File

@ -5,12 +5,13 @@ def intersection(function,x0,x1): #function is the f we want to find its root an
x_n1 = x1
while True:
x_n2 = x_n1-(function(x_n1)/((function(x_n1)-function(x_n))/(x_n1-x_n)))
if abs(x_n2 - x_n1)<0.00001 :
if abs(x_n2 - x_n1) < 10**-5:
return x_n2
x_n=x_n1
x_n1=x_n2
def f(x):
return math.pow(x,3)-2*x-5
return math.pow(x , 3) - (2 * x) -5
print(intersection(f,3,3.5))
if __name__ == "__main__":
print(intersection(f,3,3.5))

View File

@ -1,13 +1,14 @@
# lowerupper (LU) decomposition - https://en.wikipedia.org/wiki/LU_decomposition
import numpy
def LUDecompose (table):
#table that contains our data
#table has to be a square array so we need to check first
# Table that contains our data
# Table has to be a square array so we need to check first
rows,columns=numpy.shape(table)
L=numpy.zeros((rows,columns))
U=numpy.zeros((rows,columns))
if rows!=columns:
return
return []
for i in range (columns):
for j in range(i-1):
sum=0
@ -22,13 +23,10 @@ def LUDecompose (table):
U[i][j]=table[i][j]-sum1
return L,U
matrix =numpy.array([[2,-2,1],[0,1,2],[5,3,1]])
L,U = LUDecompose(matrix)
print(L)
print(U)
if __name__ == "__main__":
matrix =numpy.array([[2,-2,1],
[0,1,2],
[5,3,1]])
L,U = LUDecompose(matrix)
print(L)
print(U)

View File

@ -1,15 +1,18 @@
# Newton's Method - https://en.wikipedia.org/wiki/Newton%27s_method
def newton(function,function1,startingInt): #function is the f(x) and function1 is the f'(x)
x_n=startingInt
while True:
x_n1=x_n-function(x_n)/function1(x_n)
if abs(x_n-x_n1)<0.00001:
if abs(x_n-x_n1) < 10**-5:
return x_n1
x_n=x_n1
def f(x):
return (x**3)-2*x-5
return (x**3) - (2 * x) -5
def f1(x):
return 3*(x**2)-2
return 3 * (x**2) -2
print(newton(f,f1,3))
if __name__ == "__main__":
print(newton(f,f1,3))

View File

@ -21,7 +21,7 @@ def minDist(mdist, vset, V):
def Dijkstra(graph, V, src):
mdist=[float('inf') for i in range(V)]
vset = [False for i in range(V)]
mdist[src] = 0.0;
mdist[src] = 0.0
for i in range(V-1):
u = minDist(mdist, vset, V)