mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Implement Deutsch-Jozsa Algorithm In Qiskit (#3447)
* Implement Deutsch-Jozsa Algorithm In Qiskit Signed-off-by: Abhishek Jaisingh <abhi2254015@gmail.com> * Add Changes Requested In Review Signed-off-by: Abhishek Jaisingh <abhi2254015@gmail.com> * Address Further Review Comments * fixup! Format Python code with psf/black push Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
2ec3750885
commit
beb2c35dd8
122
quantum/deutsch_jozsa.py
Executable file
122
quantum/deutsch_jozsa.py
Executable file
|
@ -0,0 +1,122 @@
|
|||
#!/usr/bin/env python3
|
||||
"""
|
||||
Deutsch-Josza Algorithm is one of the first examples of a quantum
|
||||
algorithm that is exponentially faster than any possible deterministic
|
||||
classical algorithm
|
||||
|
||||
Premise:
|
||||
We are given a hidden Boolean function f,
|
||||
which takes as input a string of bits, and returns either 0 or 1:
|
||||
|
||||
f({x0,x1,x2,...}) -> 0 or 1, where xn is 0 or 1
|
||||
|
||||
The property of the given Boolean function is that it is guaranteed to
|
||||
either be balanced or constant. A constant function returns all 0's
|
||||
or all 1's for any input, while a balanced function returns 0's for
|
||||
exactly half of all inputs and 1's for the other half. Our task is to
|
||||
determine whether the given function is balanced or constant.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm
|
||||
- https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import qiskit as q
|
||||
|
||||
|
||||
def dj_oracle(case: str, num_qubits: int) -> q.QuantumCircuit:
|
||||
"""
|
||||
Returns a Quantum Circuit for the Oracle function.
|
||||
The circuit returned can represent balanced or constant function,
|
||||
according to the arguments passed
|
||||
"""
|
||||
# This circuit has num_qubits+1 qubits: the size of the input,
|
||||
# plus one output qubit
|
||||
oracle_qc = q.QuantumCircuit(num_qubits + 1)
|
||||
|
||||
# First, let's deal with the case in which oracle is balanced
|
||||
if case == "balanced":
|
||||
# First generate a random number that tells us which CNOTs to
|
||||
# wrap in X-gates:
|
||||
b = np.random.randint(1, 2 ** num_qubits)
|
||||
# Next, format 'b' as a binary string of length 'n', padded with zeros:
|
||||
b_str = format(b, f"0{num_qubits}b")
|
||||
# Next, we place the first X-gates. Each digit in our binary string
|
||||
# correspopnds to a qubit, if the digit is 0, we do nothing, if it's 1
|
||||
# we apply an X-gate to that qubit:
|
||||
for index, bit in enumerate(b_str):
|
||||
if bit == "1":
|
||||
oracle_qc.x(index)
|
||||
# Do the controlled-NOT gates for each qubit, using the output qubit
|
||||
# as the target:
|
||||
for index in range(num_qubits):
|
||||
oracle_qc.cx(index, num_qubits)
|
||||
# Next, place the final X-gates
|
||||
for index, bit in enumerate(b_str):
|
||||
if bit == "1":
|
||||
oracle_qc.x(index)
|
||||
|
||||
# Case in which oracle is constant
|
||||
if case == "constant":
|
||||
# First decide what the fixed output of the oracle will be
|
||||
# (either always 0 or always 1)
|
||||
output = np.random.randint(2)
|
||||
if output == 1:
|
||||
oracle_qc.x(num_qubits)
|
||||
|
||||
oracle_gate = oracle_qc.to_gate()
|
||||
oracle_gate.name = "Oracle" # To show when we display the circuit
|
||||
return oracle_gate
|
||||
|
||||
|
||||
def dj_algorithm(oracle: q.QuantumCircuit, num_qubits: int) -> q.QuantumCircuit:
|
||||
"""
|
||||
Returns the complete Deustch-Jozsa Quantum Circuit,
|
||||
adding Input & Output registers and Hadamard & Measurement Gates,
|
||||
to the Oracle Circuit passed in arguments
|
||||
"""
|
||||
dj_circuit = q.QuantumCircuit(num_qubits + 1, num_qubits)
|
||||
# Set up the output qubit:
|
||||
dj_circuit.x(num_qubits)
|
||||
dj_circuit.h(num_qubits)
|
||||
# And set up the input register:
|
||||
for qubit in range(num_qubits):
|
||||
dj_circuit.h(qubit)
|
||||
# Let's append the oracle gate to our circuit:
|
||||
dj_circuit.append(oracle, range(num_qubits + 1))
|
||||
# Finally, perform the H-gates again and measure:
|
||||
for qubit in range(num_qubits):
|
||||
dj_circuit.h(qubit)
|
||||
|
||||
for i in range(num_qubits):
|
||||
dj_circuit.measure(i, i)
|
||||
|
||||
return dj_circuit
|
||||
|
||||
|
||||
def deutsch_jozsa(case: str, num_qubits: int) -> q.result.counts.Counts:
|
||||
"""
|
||||
Main function that builds the circuit using other helper functions,
|
||||
runs the experiment 1000 times & returns the resultant qubit counts
|
||||
>>> deutsch_jozsa("constant", 3)
|
||||
{'000': 1000}
|
||||
>>> deutsch_jozsa("balanced", 3)
|
||||
{'111': 1000}
|
||||
"""
|
||||
# Use Aer's qasm_simulator
|
||||
simulator = q.Aer.get_backend("qasm_simulator")
|
||||
|
||||
oracle_gate = dj_oracle(case, num_qubits)
|
||||
dj_circuit = dj_algorithm(oracle_gate, num_qubits)
|
||||
|
||||
# Execute the circuit on the qasm simulator
|
||||
job = q.execute(dj_circuit, simulator, shots=1000)
|
||||
|
||||
# Return the histogram data of the results of the experiment.
|
||||
return job.result().get_counts(dj_circuit)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"Deutsch Jozsa - Constant Oracle: {deutsch_jozsa('constant', 3)}")
|
||||
print(f"Deutsch Jozsa - Balanced Oracle: {deutsch_jozsa('balanced', 3)}")
|
Loading…
Reference in New Issue
Block a user