mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Added implementation for simulated annealing (#1679)
* added hill climbing algorithm * Shorten long lines, streamline get_neighbors() * Update hill_climbing.py * Update and rename optimization/hill_climbing.py to searches/hill_climbing.py * added hill climbing algorithm * Shorten long lines, streamline get_neighbors() * Update hill_climbing.py * Rebased * added simulated annealing.py * added final comments and test * black formatted * restricted search domain Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
c5b376d52d
commit
c01d178798
134
searches/simulated_annealing.py
Normal file
134
searches/simulated_annealing.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
# https://en.wikipedia.org/wiki/Simulated_annealing
|
||||
import math, random
|
||||
from hill_climbing import SearchProblem
|
||||
|
||||
|
||||
def simulated_annealing(
|
||||
search_prob,
|
||||
find_max: bool = True,
|
||||
max_x: float = math.inf,
|
||||
min_x: float = -math.inf,
|
||||
max_y: float = math.inf,
|
||||
min_y: float = -math.inf,
|
||||
visualization: bool = False,
|
||||
start_temperate: float = 100,
|
||||
rate_of_decrease: float = 0.01,
|
||||
threshold_temp: float = 1,
|
||||
) -> SearchProblem:
|
||||
"""
|
||||
implementation of the simulated annealing algorithm. We start with a given state, find
|
||||
all its neighbors. Pick a random neighbor, if that neighbor improves the solution, we move
|
||||
in that direction, if that neighbor does not improve the solution, we generate a random
|
||||
real number between 0 and 1, if the number is within a certain range (calculated using
|
||||
temperature) we move in that direction, else we pick another neighbor randomly and repeat the process.
|
||||
Args:
|
||||
search_prob: The search state at the start.
|
||||
find_max: If True, the algorithm should find the minimum else the minimum.
|
||||
max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y.
|
||||
visualization: If True, a matplotlib graph is displayed.
|
||||
start_temperate: the initial temperate of the system when the program starts.
|
||||
rate_of_decrease: the rate at which the temperate decreases in each iteration.
|
||||
threshold_temp: the threshold temperature below which we end the search
|
||||
Returns a search state having the maximum (or minimum) score.
|
||||
"""
|
||||
search_end = False
|
||||
current_state = search_prob
|
||||
current_temp = start_temperate
|
||||
scores = []
|
||||
iterations = 0
|
||||
best_state = None
|
||||
|
||||
while not search_end:
|
||||
current_score = current_state.score()
|
||||
if best_state is None or current_score > best_state.score():
|
||||
best_state = current_state
|
||||
scores.append(current_score)
|
||||
iterations += 1
|
||||
next_state = None
|
||||
neighbors = current_state.get_neighbors()
|
||||
while (
|
||||
next_state is None and neighbors
|
||||
): # till we do not find a neighbor that we can move to
|
||||
index = random.randint(0, len(neighbors) - 1) # picking a random neighbor
|
||||
picked_neighbor = neighbors.pop(index)
|
||||
change = picked_neighbor.score() - current_score
|
||||
|
||||
if (
|
||||
picked_neighbor.x > max_x
|
||||
or picked_neighbor.x < min_x
|
||||
or picked_neighbor.y > max_y
|
||||
or picked_neighbor.y < min_y
|
||||
):
|
||||
continue # neighbor outside our bounds
|
||||
|
||||
if not find_max:
|
||||
change = change * -1 # incase we are finding minimum
|
||||
if change > 0: # improves the solution
|
||||
next_state = picked_neighbor
|
||||
else:
|
||||
probabililty = (math.e) ** (
|
||||
change / current_temp
|
||||
) # probability generation function
|
||||
if random.random() < probabililty: # random number within probability
|
||||
next_state = picked_neighbor
|
||||
current_temp = current_temp - (current_temp * rate_of_decrease)
|
||||
|
||||
if (
|
||||
current_temp < threshold_temp or next_state is None
|
||||
): # temperature below threshold, or
|
||||
# couldnt find a suitaable neighbor
|
||||
search_end = True
|
||||
else:
|
||||
current_state = next_state
|
||||
|
||||
if visualization:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.plot(range(iterations), scores)
|
||||
plt.xlabel("Iterations")
|
||||
plt.ylabel("Function values")
|
||||
plt.show()
|
||||
return best_state
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
def test_f1(x, y):
|
||||
return (x ** 2) + (y ** 2)
|
||||
|
||||
# starting the problem with initial coordinates (12, 47)
|
||||
prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1)
|
||||
local_min = simulated_annealing(
|
||||
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
|
||||
)
|
||||
print(
|
||||
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
|
||||
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
|
||||
)
|
||||
|
||||
# starting the problem with initial coordinates (12, 47)
|
||||
prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1)
|
||||
local_min = simulated_annealing(
|
||||
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
|
||||
)
|
||||
print(
|
||||
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
|
||||
f"and 50 > y > - 5 found via hill climbing: {local_min.score()}"
|
||||
)
|
||||
|
||||
def test_f2(x, y):
|
||||
return (3 * x ** 2) - (6 * y)
|
||||
|
||||
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
|
||||
local_min = simulated_annealing(prob, find_max=False, visualization=True)
|
||||
print(
|
||||
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
|
||||
f"{local_min.score()}"
|
||||
)
|
||||
|
||||
prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1)
|
||||
local_min = simulated_annealing(prob, find_max=True, visualization=True)
|
||||
print(
|
||||
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
|
||||
f"{local_min.score()}"
|
||||
)
|
Loading…
Reference in New Issue
Block a user