mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Reduce the complexity of genetic_algorithm/basic_string.py (#8606)
This commit is contained in:
parent
2a57dafce0
commit
c0892a0651
|
@ -21,6 +21,54 @@ MUTATION_PROBABILITY = 0.4
|
|||
random.seed(random.randint(0, 1000))
|
||||
|
||||
|
||||
def evaluate(item: str, main_target: str) -> tuple[str, float]:
|
||||
"""
|
||||
Evaluate how similar the item is with the target by just
|
||||
counting each char in the right position
|
||||
>>> evaluate("Helxo Worlx", "Hello World")
|
||||
('Helxo Worlx', 9.0)
|
||||
"""
|
||||
score = len([g for position, g in enumerate(item) if g == main_target[position]])
|
||||
return (item, float(score))
|
||||
|
||||
|
||||
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
|
||||
"""Slice and combine two string at a random point."""
|
||||
random_slice = random.randint(0, len(parent_1) - 1)
|
||||
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
|
||||
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
|
||||
return (child_1, child_2)
|
||||
|
||||
|
||||
def mutate(child: str, genes: list[str]) -> str:
|
||||
"""Mutate a random gene of a child with another one from the list."""
|
||||
child_list = list(child)
|
||||
if random.uniform(0, 1) < MUTATION_PROBABILITY:
|
||||
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
|
||||
return "".join(child_list)
|
||||
|
||||
|
||||
# Select, crossover and mutate a new population.
|
||||
def select(
|
||||
parent_1: tuple[str, float],
|
||||
population_score: list[tuple[str, float]],
|
||||
genes: list[str],
|
||||
) -> list[str]:
|
||||
"""Select the second parent and generate new population"""
|
||||
pop = []
|
||||
# Generate more children proportionally to the fitness score.
|
||||
child_n = int(parent_1[1] * 100) + 1
|
||||
child_n = 10 if child_n >= 10 else child_n
|
||||
for _ in range(child_n):
|
||||
parent_2 = population_score[random.randint(0, N_SELECTED)][0]
|
||||
|
||||
child_1, child_2 = crossover(parent_1[0], parent_2)
|
||||
# Append new string to the population list.
|
||||
pop.append(mutate(child_1, genes))
|
||||
pop.append(mutate(child_2, genes))
|
||||
return pop
|
||||
|
||||
|
||||
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
|
||||
"""
|
||||
Verify that the target contains no genes besides the ones inside genes variable.
|
||||
|
@ -70,17 +118,6 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
|
|||
total_population += len(population)
|
||||
|
||||
# Random population created. Now it's time to evaluate.
|
||||
def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
|
||||
"""
|
||||
Evaluate how similar the item is with the target by just
|
||||
counting each char in the right position
|
||||
>>> evaluate("Helxo Worlx", Hello World)
|
||||
["Helxo Worlx", 9]
|
||||
"""
|
||||
score = len(
|
||||
[g for position, g in enumerate(item) if g == main_target[position]]
|
||||
)
|
||||
return (item, float(score))
|
||||
|
||||
# Adding a bit of concurrency can make everything faster,
|
||||
#
|
||||
|
@ -94,7 +131,7 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
|
|||
#
|
||||
# but with a simple algorithm like this, it will probably be slower.
|
||||
# We just need to call evaluate for every item inside the population.
|
||||
population_score = [evaluate(item) for item in population]
|
||||
population_score = [evaluate(item, target) for item in population]
|
||||
|
||||
# Check if there is a matching evolution.
|
||||
population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
|
||||
|
@ -121,41 +158,9 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
|
|||
(item, score / len(target)) for item, score in population_score
|
||||
]
|
||||
|
||||
# Select, crossover and mutate a new population.
|
||||
def select(parent_1: tuple[str, float]) -> list[str]:
|
||||
"""Select the second parent and generate new population"""
|
||||
pop = []
|
||||
# Generate more children proportionally to the fitness score.
|
||||
child_n = int(parent_1[1] * 100) + 1
|
||||
child_n = 10 if child_n >= 10 else child_n
|
||||
for _ in range(child_n):
|
||||
parent_2 = population_score[ # noqa: B023
|
||||
random.randint(0, N_SELECTED)
|
||||
][0]
|
||||
|
||||
child_1, child_2 = crossover(parent_1[0], parent_2)
|
||||
# Append new string to the population list.
|
||||
pop.append(mutate(child_1))
|
||||
pop.append(mutate(child_2))
|
||||
return pop
|
||||
|
||||
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
|
||||
"""Slice and combine two string at a random point."""
|
||||
random_slice = random.randint(0, len(parent_1) - 1)
|
||||
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
|
||||
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
|
||||
return (child_1, child_2)
|
||||
|
||||
def mutate(child: str) -> str:
|
||||
"""Mutate a random gene of a child with another one from the list."""
|
||||
child_list = list(child)
|
||||
if random.uniform(0, 1) < MUTATION_PROBABILITY:
|
||||
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
|
||||
return "".join(child_list)
|
||||
|
||||
# This is selection
|
||||
for i in range(N_SELECTED):
|
||||
population.extend(select(population_score[int(i)]))
|
||||
population.extend(select(population_score[int(i)], population_score, genes))
|
||||
# Check if the population has already reached the maximum value and if so,
|
||||
# break the cycle. If this check is disabled, the algorithm will take
|
||||
# forever to compute large strings, but will also calculate small strings in
|
||||
|
|
Loading…
Reference in New Issue
Block a user