Reduce the complexity of genetic_algorithm/basic_string.py (#8606)

This commit is contained in:
Maxim Smolskiy 2023-05-16 00:47:50 +03:00 committed by GitHub
parent 2a57dafce0
commit c0892a0651
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -21,6 +21,54 @@ MUTATION_PROBABILITY = 0.4
random.seed(random.randint(0, 1000)) random.seed(random.randint(0, 1000))
def evaluate(item: str, main_target: str) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", "Hello World")
('Helxo Worlx', 9.0)
"""
score = len([g for position, g in enumerate(item) if g == main_target[position]])
return (item, float(score))
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str, genes: list[str]) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# Select, crossover and mutate a new population.
def select(
parent_1: tuple[str, float],
population_score: list[tuple[str, float]],
genes: list[str],
) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[random.randint(0, N_SELECTED)][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1, genes))
pop.append(mutate(child_2, genes))
return pop
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]: def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
""" """
Verify that the target contains no genes besides the ones inside genes variable. Verify that the target contains no genes besides the ones inside genes variable.
@ -70,17 +118,6 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
total_population += len(population) total_population += len(population)
# Random population created. Now it's time to evaluate. # Random population created. Now it's time to evaluate.
def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", Hello World)
["Helxo Worlx", 9]
"""
score = len(
[g for position, g in enumerate(item) if g == main_target[position]]
)
return (item, float(score))
# Adding a bit of concurrency can make everything faster, # Adding a bit of concurrency can make everything faster,
# #
@ -94,7 +131,7 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
# #
# but with a simple algorithm like this, it will probably be slower. # but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population. # We just need to call evaluate for every item inside the population.
population_score = [evaluate(item) for item in population] population_score = [evaluate(item, target) for item in population]
# Check if there is a matching evolution. # Check if there is a matching evolution.
population_score = sorted(population_score, key=lambda x: x[1], reverse=True) population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
@ -121,41 +158,9 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
(item, score / len(target)) for item, score in population_score (item, score / len(target)) for item, score in population_score
] ]
# Select, crossover and mutate a new population.
def select(parent_1: tuple[str, float]) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[ # noqa: B023
random.randint(0, N_SELECTED)
][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1))
pop.append(mutate(child_2))
return pop
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# This is selection # This is selection
for i in range(N_SELECTED): for i in range(N_SELECTED):
population.extend(select(population_score[int(i)])) population.extend(select(population_score[int(i)], population_score, genes))
# Check if the population has already reached the maximum value and if so, # Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take # break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in # forever to compute large strings, but will also calculate small strings in