mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
added self organising maps algorithm in the machine learning section. (#6877)
* added self organising maps algo * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update machine_learning/Self_Organising_Maps.py * Update and rename Self_Organising_Maps.py to self_organizing_map.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update self_organizing_map.py * Update self_organizing_map.py * Update self_organizing_map.py * Update self_organizing_map.py Co-authored-by: Eeman Majumder <eemanmajumder@Eemans-MacBook-Pro.local> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
467ade28a0
commit
c0c230255f
73
machine_learning/self_organizing_map.py
Normal file
73
machine_learning/self_organizing_map.py
Normal file
|
@ -0,0 +1,73 @@
|
|||
"""
|
||||
https://en.wikipedia.org/wiki/Self-organizing_map
|
||||
"""
|
||||
import math
|
||||
|
||||
|
||||
class SelfOrganizingMap:
|
||||
def get_winner(self, weights: list[list[float]], sample: list[int]) -> int:
|
||||
"""
|
||||
Compute the winning vector by Euclidean distance
|
||||
|
||||
>>> SelfOrganizingMap().get_winner([[1, 2, 3], [4, 5, 6]], [1, 2, 3])
|
||||
1
|
||||
"""
|
||||
d0 = 0.0
|
||||
d1 = 0.0
|
||||
for i in range(len(sample)):
|
||||
d0 += math.pow((sample[i] - weights[0][i]), 2)
|
||||
d1 += math.pow((sample[i] - weights[1][i]), 2)
|
||||
return 0 if d0 > d1 else 1
|
||||
return 0
|
||||
|
||||
def update(
|
||||
self, weights: list[list[int | float]], sample: list[int], j: int, alpha: float
|
||||
) -> list[list[int | float]]:
|
||||
"""
|
||||
Update the winning vector.
|
||||
|
||||
>>> SelfOrganizingMap().update([[1, 2, 3], [4, 5, 6]], [1, 2, 3], 1, 0.1)
|
||||
[[1, 2, 3], [3.7, 4.7, 6]]
|
||||
"""
|
||||
for i in range(len(weights)):
|
||||
weights[j][i] += alpha * (sample[i] - weights[j][i])
|
||||
return weights
|
||||
|
||||
|
||||
# Driver code
|
||||
def main() -> None:
|
||||
# Training Examples ( m, n )
|
||||
training_samples = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
|
||||
|
||||
# weight initialization ( n, C )
|
||||
weights = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
|
||||
|
||||
# training
|
||||
self_organizing_map = SelfOrganizingMap()
|
||||
epochs = 3
|
||||
alpha = 0.5
|
||||
|
||||
for i in range(epochs):
|
||||
for j in range(len(training_samples)):
|
||||
|
||||
# training sample
|
||||
sample = training_samples[j]
|
||||
|
||||
# Compute the winning vector
|
||||
winner = self_organizing_map.get_winner(weights, sample)
|
||||
|
||||
# Update the winning vector
|
||||
weights = self_organizing_map.update(weights, sample, winner, alpha)
|
||||
|
||||
# classify test sample
|
||||
sample = [0, 0, 0, 1]
|
||||
winner = self_organizing_map.get_winner(weights, sample)
|
||||
|
||||
# results
|
||||
print(f"Clusters that the test sample belongs to : {winner}")
|
||||
print(f"Weights that have been trained : {weights}")
|
||||
|
||||
|
||||
# running the main() function
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user