mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Added Nearest neighbour algorithm (#1934)
This commit is contained in:
parent
7469fb6edd
commit
c18c677a38
0
digital_image_processing/resize/__init__.py
Normal file
0
digital_image_processing/resize/__init__.py
Normal file
69
digital_image_processing/resize/resize.py
Normal file
69
digital_image_processing/resize/resize.py
Normal file
|
@ -0,0 +1,69 @@
|
|||
""" Multiple image resizing techniques """
|
||||
import numpy as np
|
||||
from cv2 import imread, imshow, waitKey, destroyAllWindows
|
||||
|
||||
|
||||
class NearestNeighbour:
|
||||
"""
|
||||
Simplest and fastest version of image resizing.
|
||||
Source: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
|
||||
"""
|
||||
|
||||
def __init__(self, img, dst_width: int, dst_height: int):
|
||||
if dst_width < 0 or dst_height < 0:
|
||||
raise ValueError(f"Destination width/height should be > 0")
|
||||
|
||||
self.img = img
|
||||
self.src_w = img.shape[1]
|
||||
self.src_h = img.shape[0]
|
||||
self.dst_w = dst_width
|
||||
self.dst_h = dst_height
|
||||
|
||||
self.ratio_x = self.src_w / self.dst_w
|
||||
self.ratio_y = self.src_h / self.dst_h
|
||||
|
||||
self.output = self.output_img = (
|
||||
np.ones((self.dst_h, self.dst_w, 3), np.uint8) * 255
|
||||
)
|
||||
|
||||
def process(self):
|
||||
for i in range(self.dst_h):
|
||||
for j in range(self.dst_w):
|
||||
self.output[i][j] = self.img[self.get_y(i)][self.get_x(j)]
|
||||
|
||||
def get_x(self, x: int) -> int:
|
||||
"""
|
||||
Get parent X coordinate for destination X
|
||||
:param x: Destination X coordinate
|
||||
:return: Parent X coordinate based on `x ratio`
|
||||
>>> nn = NearestNeighbour(imread("digital_image_processing/image_data/lena.jpg", 1), 100, 100)
|
||||
>>> nn.ratio_x = 0.5
|
||||
>>> nn.get_x(4)
|
||||
2
|
||||
"""
|
||||
return int(self.ratio_x * x)
|
||||
|
||||
def get_y(self, y: int) -> int:
|
||||
"""
|
||||
Get parent Y coordinate for destination Y
|
||||
:param y: Destination X coordinate
|
||||
:return: Parent X coordinate based on `y ratio`
|
||||
>>> nn = NearestNeighbour(imread("digital_image_processing/image_data/lena.jpg", 1), 100, 100)
|
||||
>>> nn.ratio_y = 0.5
|
||||
>>> nn.get_y(4)
|
||||
2
|
||||
"""
|
||||
return int(self.ratio_y * y)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dst_w, dst_h = 800, 600
|
||||
im = imread("image_data/lena.jpg", 1)
|
||||
n = NearestNeighbour(im, dst_w, dst_h)
|
||||
n.process()
|
||||
|
||||
imshow(
|
||||
f"Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}", n.output
|
||||
)
|
||||
waitKey(0)
|
||||
destroyAllWindows()
|
|
@ -11,6 +11,7 @@ import digital_image_processing.change_contrast as cc
|
|||
import digital_image_processing.convert_to_negative as cn
|
||||
import digital_image_processing.sepia as sp
|
||||
import digital_image_processing.dithering.burkes as bs
|
||||
import digital_image_processing.resize.resize as rs
|
||||
from cv2 import imread, cvtColor, COLOR_BGR2GRAY
|
||||
from numpy import array, uint8
|
||||
from PIL import Image
|
||||
|
@ -82,3 +83,10 @@ def test_burkes(file_path: str = "digital_image_processing/image_data/lena_small
|
|||
burkes = bs.Burkes(imread(file_path, 1), 120)
|
||||
burkes.process()
|
||||
assert burkes.output_img.any()
|
||||
|
||||
def test_nearest_neighbour(
|
||||
file_path: str = "digital_image_processing/image_data/lena_small.jpg",
|
||||
):
|
||||
nn = rs.NearestNeighbour(imread(file_path, 1), 400, 200)
|
||||
nn.process()
|
||||
assert nn.output.any()
|
||||
|
|
Loading…
Reference in New Issue
Block a user