Add bilateral filter (#1786)

* Added Bilateral filter

* Added Bilateral filter

* changed types of varS and varI

* formatted with black

* added type hints

* changed variable names

* Update bilateral_filter.py

* Drop transitory variables, add parse_args()

Co-authored-by: vinayak <itssvinayak@gmail.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
praveennadiminti 2020-02-26 15:56:45 +05:30 committed by GitHub
parent 5543d14b3f
commit c1a4cc96c8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,88 @@
"""
Implementation of Bilateral filter
Inputs:
img: A 2d image with values in between 0 and 1
varS: variance in space dimension.
varI: variance in Intensity.
N: Kernel size(Must be an odd number)
Output:
img:A 2d zero padded image with values in between 0 and 1
"""
import cv2
import numpy as np
import math
import sys
def vec_gaussian(img: np.ndarray, variance: float) -> np.ndarray:
# For applying gaussian function for each element in matrix.
sigma = math.sqrt(variance)
cons = 1 / (sigma * math.sqrt(2 * math.pi))
return cons * np.exp(-((img / sigma) ** 2) * 0.5)
def get_slice(img: np.ndarray, x: int, y: int, kernel_size: int) -> np.ndarray:
half = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def get_gauss_kernel(kernel_size: int, spatial_variance: float) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
arr = np.zeros((kernel_size, kernel_size))
for i in range(0, kernel_size):
for j in range(0, kernel_size):
arr[i, j] = math.sqrt(
abs(i - kernel_size // 2) ** 2 + abs(j - kernel_size // 2) ** 2
)
return vec_gaussian(arr, spatial_variance)
def bilateral_filter(
img: np.ndarray,
spatial_variance: float,
intensity_variance: float,
kernel_size: int,
) -> np.ndarray:
img2 = np.zeros(img.shape)
gaussKer = get_gauss_kernel(kernel_size, spatial_variance)
sizeX, sizeY = img.shape
for i in range(kernel_size // 2, sizeX - kernel_size // 2):
for j in range(kernel_size // 2, sizeY - kernel_size // 2):
imgS = get_slice(img, i, j, kernel_size)
imgI = imgS - imgS[kernel_size // 2, kernel_size // 2]
imgIG = vec_gaussian(imgI, intensity_variance)
weights = np.multiply(gaussKer, imgIG)
vals = np.multiply(imgS, weights)
val = np.sum(vals) / np.sum(weights)
img2[i, j] = val
return img2
def parse_args(args: list) -> tuple:
filename = args[1] if args[1:] else "../image_data/lena.jpg"
spatial_variance = float(args[2]) if args[2:] else 1.0
intensity_variance = float(args[3]) if args[3:] else 1.0
if args[4:]:
kernel_size = int(args[4])
kernel_size = kernel_size + abs(kernel_size % 2 - 1)
else:
kernel_size = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
filename, spatial_variance, intensity_variance, kernel_size = parse_args(sys.argv)
img = cv2.imread(filename, 0)
cv2.imshow("input image", img)
out = img / 255
out = out.astype("float32")
out = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
out = out * 255
out = np.uint8(out)
cv2.imshow("output image", out)
cv2.waitKey(0)
cv2.destroyAllWindows()