mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Add bilateral filter (#1786)
* Added Bilateral filter * Added Bilateral filter * changed types of varS and varI * formatted with black * added type hints * changed variable names * Update bilateral_filter.py * Drop transitory variables, add parse_args() Co-authored-by: vinayak <itssvinayak@gmail.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
5543d14b3f
commit
c1a4cc96c8
88
digital_image_processing/filters/bilateral_filter.py
Normal file
88
digital_image_processing/filters/bilateral_filter.py
Normal file
|
@ -0,0 +1,88 @@
|
|||
"""
|
||||
Implementation of Bilateral filter
|
||||
|
||||
Inputs:
|
||||
img: A 2d image with values in between 0 and 1
|
||||
varS: variance in space dimension.
|
||||
varI: variance in Intensity.
|
||||
N: Kernel size(Must be an odd number)
|
||||
Output:
|
||||
img:A 2d zero padded image with values in between 0 and 1
|
||||
"""
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import sys
|
||||
|
||||
|
||||
def vec_gaussian(img: np.ndarray, variance: float) -> np.ndarray:
|
||||
# For applying gaussian function for each element in matrix.
|
||||
sigma = math.sqrt(variance)
|
||||
cons = 1 / (sigma * math.sqrt(2 * math.pi))
|
||||
return cons * np.exp(-((img / sigma) ** 2) * 0.5)
|
||||
|
||||
|
||||
def get_slice(img: np.ndarray, x: int, y: int, kernel_size: int) -> np.ndarray:
|
||||
half = kernel_size // 2
|
||||
return img[x - half : x + half + 1, y - half : y + half + 1]
|
||||
|
||||
|
||||
def get_gauss_kernel(kernel_size: int, spatial_variance: float) -> np.ndarray:
|
||||
# Creates a gaussian kernel of given dimension.
|
||||
arr = np.zeros((kernel_size, kernel_size))
|
||||
for i in range(0, kernel_size):
|
||||
for j in range(0, kernel_size):
|
||||
arr[i, j] = math.sqrt(
|
||||
abs(i - kernel_size // 2) ** 2 + abs(j - kernel_size // 2) ** 2
|
||||
)
|
||||
return vec_gaussian(arr, spatial_variance)
|
||||
|
||||
|
||||
def bilateral_filter(
|
||||
img: np.ndarray,
|
||||
spatial_variance: float,
|
||||
intensity_variance: float,
|
||||
kernel_size: int,
|
||||
) -> np.ndarray:
|
||||
img2 = np.zeros(img.shape)
|
||||
gaussKer = get_gauss_kernel(kernel_size, spatial_variance)
|
||||
sizeX, sizeY = img.shape
|
||||
for i in range(kernel_size // 2, sizeX - kernel_size // 2):
|
||||
for j in range(kernel_size // 2, sizeY - kernel_size // 2):
|
||||
|
||||
imgS = get_slice(img, i, j, kernel_size)
|
||||
imgI = imgS - imgS[kernel_size // 2, kernel_size // 2]
|
||||
imgIG = vec_gaussian(imgI, intensity_variance)
|
||||
weights = np.multiply(gaussKer, imgIG)
|
||||
vals = np.multiply(imgS, weights)
|
||||
val = np.sum(vals) / np.sum(weights)
|
||||
img2[i, j] = val
|
||||
return img2
|
||||
|
||||
|
||||
def parse_args(args: list) -> tuple:
|
||||
filename = args[1] if args[1:] else "../image_data/lena.jpg"
|
||||
spatial_variance = float(args[2]) if args[2:] else 1.0
|
||||
intensity_variance = float(args[3]) if args[3:] else 1.0
|
||||
if args[4:]:
|
||||
kernel_size = int(args[4])
|
||||
kernel_size = kernel_size + abs(kernel_size % 2 - 1)
|
||||
else:
|
||||
kernel_size = 5
|
||||
return filename, spatial_variance, intensity_variance, kernel_size
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
filename, spatial_variance, intensity_variance, kernel_size = parse_args(sys.argv)
|
||||
img = cv2.imread(filename, 0)
|
||||
cv2.imshow("input image", img)
|
||||
|
||||
out = img / 255
|
||||
out = out.astype("float32")
|
||||
out = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
|
||||
out = out * 255
|
||||
out = np.uint8(out)
|
||||
cv2.imshow("output image", out)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
Loading…
Reference in New Issue
Block a user