mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Add smooth l1 loss algorithm (#11239)
This commit is contained in:
parent
c0e700c91c
commit
c1d29ba459
|
@ -573,6 +573,62 @@ def perplexity_loss(
|
|||
return np.mean(perp_losses)
|
||||
|
||||
|
||||
def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) -> float:
|
||||
"""
|
||||
Calculate the Smooth L1 Loss between y_true and y_pred.
|
||||
|
||||
The Smooth L1 Loss is less sensitive to outliers than the L2 Loss and is often used
|
||||
in regression problems, such as object detection.
|
||||
|
||||
Smooth L1 Loss =
|
||||
0.5 * (x - y)^2 / beta, if |x - y| < beta
|
||||
|x - y| - 0.5 * beta, otherwise
|
||||
|
||||
Reference:
|
||||
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
|
||||
|
||||
Args:
|
||||
y_true: Array of true values.
|
||||
y_pred: Array of predicted values.
|
||||
beta: Specifies the threshold at which to change between L1 and L2 loss.
|
||||
|
||||
Returns:
|
||||
The calculated Smooth L1 Loss between y_true and y_pred.
|
||||
|
||||
Raises:
|
||||
ValueError: If the length of the two arrays is not the same.
|
||||
|
||||
>>> y_true = np.array([3, 5, 2, 7])
|
||||
>>> y_pred = np.array([2.9, 4.8, 2.1, 7.2])
|
||||
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
||||
0.012500000000000022
|
||||
|
||||
>>> y_true = np.array([2, 4, 6])
|
||||
>>> y_pred = np.array([1, 5, 7])
|
||||
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
||||
0.5
|
||||
|
||||
>>> y_true = np.array([1, 3, 5, 7])
|
||||
>>> y_pred = np.array([1, 3, 5, 7])
|
||||
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
||||
0.0
|
||||
|
||||
>>> y_true = np.array([1, 3, 5])
|
||||
>>> y_pred = np.array([1, 3, 5, 7])
|
||||
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: The length of the two arrays should be the same.
|
||||
"""
|
||||
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("The length of the two arrays should be the same.")
|
||||
|
||||
diff = np.abs(y_true - y_pred)
|
||||
loss = np.where(diff < beta, 0.5 * diff**2 / beta, diff - 0.5 * beta)
|
||||
return np.mean(loss)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user