Update run.py in machine_learning/forecasting (#8957)

* Fixed reading CSV file, added type check for data_safety_checker function

* Formatted run.py

* updating DIRECTORY.md

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Adithya Awati 2023-08-14 12:46:24 +05:30 committed by GitHub
parent 02d89bde67
commit c290dd6a43
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 19 additions and 19 deletions

View File

@ -336,6 +336,7 @@
* [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py) * [Minimum Tickets Cost](dynamic_programming/minimum_tickets_cost.py)
* [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py) * [Optimal Binary Search Tree](dynamic_programming/optimal_binary_search_tree.py)
* [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py) * [Palindrome Partitioning](dynamic_programming/palindrome_partitioning.py)
* [Regex Match](dynamic_programming/regex_match.py)
* [Rod Cutting](dynamic_programming/rod_cutting.py) * [Rod Cutting](dynamic_programming/rod_cutting.py)
* [Subset Generation](dynamic_programming/subset_generation.py) * [Subset Generation](dynamic_programming/subset_generation.py)
* [Sum Of Subset](dynamic_programming/sum_of_subset.py) * [Sum Of Subset](dynamic_programming/sum_of_subset.py)

View File

@ -1,4 +1,4 @@
total_user,total_events,days total_users,total_events,days
18231,0.0,1 18231,0.0,1
22621,1.0,2 22621,1.0,2
15675,0.0,3 15675,0.0,3

1 total_user total_users total_events days
2 18231 0.0 1
3 22621 1.0 2
4 15675 0.0 3

View File

@ -1,6 +1,6 @@
""" """
this is code for forecasting this is code for forecasting
but i modified it and used it for safety checker of data but I modified it and used it for safety checker of data
for ex: you have an online shop and for some reason some data are for ex: you have an online shop and for some reason some data are
missing (the amount of data that u expected are not supposed to be) missing (the amount of data that u expected are not supposed to be)
then we can use it then we can use it
@ -102,6 +102,10 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
""" """
safe = 0 safe = 0
not_safe = 0 not_safe = 0
if not isinstance(actual_result, float):
raise TypeError("Actual result should be float. Value passed is a list")
for i in list_vote: for i in list_vote:
if i > actual_result: if i > actual_result:
safe = not_safe + 1 safe = not_safe + 1
@ -114,16 +118,11 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
if __name__ == "__main__": if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
data_input = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]]
data_input_df = pd.DataFrame(
data_input, columns=["total_user", "total_even", "days"]
)
""" """
data column = total user in a day, how much online event held in one day, data column = total user in a day, how much online event held in one day,
what day is that(sunday-saturday) what day is that(sunday-saturday)
""" """
data_input_df = pd.read_csv("ex_data.csv")
# start normalization # start normalization
normalize_df = Normalizer().fit_transform(data_input_df.values) normalize_df = Normalizer().fit_transform(data_input_df.values)
@ -138,23 +137,23 @@ if __name__ == "__main__":
x_test = x[len(x) - 1 :] x_test = x[len(x) - 1 :]
# for linear regression & sarimax # for linear regression & sarimax
trn_date = total_date[: len(total_date) - 1] train_date = total_date[: len(total_date) - 1]
trn_user = total_user[: len(total_user) - 1] train_user = total_user[: len(total_user) - 1]
trn_match = total_match[: len(total_match) - 1] train_match = total_match[: len(total_match) - 1]
tst_date = total_date[len(total_date) - 1 :] test_date = total_date[len(total_date) - 1 :]
tst_user = total_user[len(total_user) - 1 :] test_user = total_user[len(total_user) - 1 :]
tst_match = total_match[len(total_match) - 1 :] test_match = total_match[len(total_match) - 1 :]
# voting system with forecasting # voting system with forecasting
res_vote = [ res_vote = [
linear_regression_prediction( linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match train_date, train_user, train_match, test_date, test_match
), ),
sarimax_predictor(trn_user, trn_match, tst_match), sarimax_predictor(train_user, train_match, test_match),
support_vector_regressor(x_train, x_test, trn_user), support_vector_regressor(x_train, x_test, train_user),
] ]
# check the safety of today's data # check the safety of today's data
not_str = "" if data_safety_checker(res_vote, tst_user) else "not " not_str = "" if data_safety_checker(res_vote, test_user[0]) else "not "
print("Today's data is {not_str}safe.") print(f"Today's data is {not_str}safe.")