mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
perf: Project Euler problem 145 solution 1 (#6259)
Improve solution (~30 times - from 900+ seconds to ~30 seconds) Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
b3d9281591
commit
c45fb3c294
|
@ -444,6 +444,7 @@
|
||||||
* [Scoring Functions](machine_learning/scoring_functions.py)
|
* [Scoring Functions](machine_learning/scoring_functions.py)
|
||||||
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
|
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
|
||||||
* [Similarity Search](machine_learning/similarity_search.py)
|
* [Similarity Search](machine_learning/similarity_search.py)
|
||||||
|
* [Support Vector Machines](machine_learning/support_vector_machines.py)
|
||||||
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
|
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
|
||||||
|
|
||||||
## Maths
|
## Maths
|
||||||
|
@ -500,6 +501,7 @@
|
||||||
* [Gaussian](maths/gaussian.py)
|
* [Gaussian](maths/gaussian.py)
|
||||||
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
|
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
|
||||||
* [Greedy Coin Change](maths/greedy_coin_change.py)
|
* [Greedy Coin Change](maths/greedy_coin_change.py)
|
||||||
|
* [Hamming Numbers](maths/hamming_numbers.py)
|
||||||
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
|
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
|
||||||
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
|
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
|
||||||
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
|
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
|
||||||
|
@ -938,6 +940,7 @@
|
||||||
* [Bogo Sort](sorts/bogo_sort.py)
|
* [Bogo Sort](sorts/bogo_sort.py)
|
||||||
* [Bubble Sort](sorts/bubble_sort.py)
|
* [Bubble Sort](sorts/bubble_sort.py)
|
||||||
* [Bucket Sort](sorts/bucket_sort.py)
|
* [Bucket Sort](sorts/bucket_sort.py)
|
||||||
|
* [Circle Sort](sorts/circle_sort.py)
|
||||||
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
|
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
|
||||||
* [Comb Sort](sorts/comb_sort.py)
|
* [Comb Sort](sorts/comb_sort.py)
|
||||||
* [Counting Sort](sorts/counting_sort.py)
|
* [Counting Sort](sorts/counting_sort.py)
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
"""
|
"""
|
||||||
Project Euler problem 145: https://projecteuler.net/problem=145
|
Project Euler problem 145: https://projecteuler.net/problem=145
|
||||||
Author: Vineet Rao
|
Author: Vineet Rao, Maxim Smolskiy
|
||||||
Problem statement:
|
Problem statement:
|
||||||
|
|
||||||
Some positive integers n have the property that the sum [ n + reverse(n) ]
|
Some positive integers n have the property that the sum [ n + reverse(n) ]
|
||||||
|
@ -13,44 +13,82 @@ There are 120 reversible numbers below one-thousand.
|
||||||
|
|
||||||
How many reversible numbers are there below one-billion (10^9)?
|
How many reversible numbers are there below one-billion (10^9)?
|
||||||
"""
|
"""
|
||||||
|
EVEN_DIGITS = [0, 2, 4, 6, 8]
|
||||||
|
ODD_DIGITS = [1, 3, 5, 7, 9]
|
||||||
|
|
||||||
|
|
||||||
def odd_digits(num: int) -> bool:
|
def reversible_numbers(
|
||||||
|
remaining_length: int, remainder: int, digits: list[int], length: int
|
||||||
|
) -> int:
|
||||||
"""
|
"""
|
||||||
Check if the number passed as argument has only odd digits.
|
Count the number of reversible numbers of given length.
|
||||||
>>> odd_digits(123)
|
Iterate over possible digits considering parity of current sum remainder.
|
||||||
False
|
>>> reversible_numbers(1, 0, [0], 1)
|
||||||
>>> odd_digits(135797531)
|
0
|
||||||
True
|
>>> reversible_numbers(2, 0, [0] * 2, 2)
|
||||||
|
20
|
||||||
|
>>> reversible_numbers(3, 0, [0] * 3, 3)
|
||||||
|
100
|
||||||
"""
|
"""
|
||||||
while num > 0:
|
if remaining_length == 0:
|
||||||
digit = num % 10
|
if digits[0] == 0 or digits[-1] == 0:
|
||||||
if digit % 2 == 0:
|
return 0
|
||||||
return False
|
|
||||||
num //= 10
|
for i in range(length // 2 - 1, -1, -1):
|
||||||
return True
|
remainder += digits[i] + digits[length - i - 1]
|
||||||
|
|
||||||
|
if remainder % 2 == 0:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
remainder //= 10
|
||||||
|
|
||||||
|
return 1
|
||||||
|
|
||||||
|
if remaining_length == 1:
|
||||||
|
if remainder % 2 == 0:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
result = 0
|
||||||
|
for digit in range(10):
|
||||||
|
digits[length // 2] = digit
|
||||||
|
result += reversible_numbers(
|
||||||
|
0, (remainder + 2 * digit) // 10, digits, length
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
result = 0
|
||||||
|
for digit1 in range(10):
|
||||||
|
digits[(length + remaining_length) // 2 - 1] = digit1
|
||||||
|
|
||||||
|
if (remainder + digit1) % 2 == 0:
|
||||||
|
other_parity_digits = ODD_DIGITS
|
||||||
|
else:
|
||||||
|
other_parity_digits = EVEN_DIGITS
|
||||||
|
|
||||||
|
for digit2 in other_parity_digits:
|
||||||
|
digits[(length - remaining_length) // 2] = digit2
|
||||||
|
result += reversible_numbers(
|
||||||
|
remaining_length - 2,
|
||||||
|
(remainder + digit1 + digit2) // 10,
|
||||||
|
digits,
|
||||||
|
length,
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def solution(max_num: int = 1_000_000_000) -> int:
|
def solution(max_power: int = 9) -> int:
|
||||||
"""
|
"""
|
||||||
To evaluate the solution, use solution()
|
To evaluate the solution, use solution()
|
||||||
>>> solution(1000)
|
>>> solution(3)
|
||||||
120
|
120
|
||||||
>>> solution(1_000_000)
|
>>> solution(6)
|
||||||
18720
|
18720
|
||||||
>>> solution(10_000_000)
|
>>> solution(7)
|
||||||
68720
|
68720
|
||||||
"""
|
"""
|
||||||
result = 0
|
result = 0
|
||||||
# All single digit numbers reverse to themselves, so their sums are even
|
for length in range(1, max_power + 1):
|
||||||
# Therefore at least one digit in their sum is even
|
result += reversible_numbers(length, 0, [0] * length, length)
|
||||||
# Last digit cannot be 0, else it causes leading zeros in reverse
|
|
||||||
for num in range(11, max_num):
|
|
||||||
if num % 10 == 0:
|
|
||||||
continue
|
|
||||||
num_sum = num + int(str(num)[::-1])
|
|
||||||
num_is_reversible = odd_digits(num_sum)
|
|
||||||
result += 1 if num_is_reversible else 0
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user