mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
Merge 81fb07bf82
into f3f32ae3ca
This commit is contained in:
commit
c51d695182
|
@ -503,6 +503,7 @@
|
||||||
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
|
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
|
||||||
* [Greedy Best First](graphs/greedy_best_first.py)
|
* [Greedy Best First](graphs/greedy_best_first.py)
|
||||||
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
|
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
|
||||||
|
* [Johnson Graph](graphs/johnson_graph.py)
|
||||||
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
|
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
|
||||||
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
|
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
|
||||||
* [Karger](graphs/karger.py)
|
* [Karger](graphs/karger.py)
|
||||||
|
|
189
graphs/johnson_graph.py
Normal file
189
graphs/johnson_graph.py
Normal file
|
@ -0,0 +1,189 @@
|
||||||
|
import heapq
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
# First implementation of johnson algorithm
|
||||||
|
# Steps followed to implement this algorithm is given in the below link:
|
||||||
|
# https://brilliant.org/wiki/johnsons-algorithm/
|
||||||
|
class JohnsonGraph:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
"""
|
||||||
|
Initializes an empty graph with no edges.
|
||||||
|
>>> g = JohnsonGraph()
|
||||||
|
>>> g.edges
|
||||||
|
[]
|
||||||
|
>>> g.graph
|
||||||
|
{}
|
||||||
|
"""
|
||||||
|
self.edges: list[tuple[str, str, int]] = []
|
||||||
|
self.graph: dict[str, list[tuple[str, int]]] = {}
|
||||||
|
|
||||||
|
# add vertices for a graph
|
||||||
|
def add_vertices(self, vertex: str) -> None:
|
||||||
|
"""
|
||||||
|
Adds a vertex `vertex` to the graph with an empty adjacency list.
|
||||||
|
>>> g = JohnsonGraph()
|
||||||
|
>>> g.add_vertices("A")
|
||||||
|
>>> g.graph
|
||||||
|
{'A': []}
|
||||||
|
"""
|
||||||
|
self.graph[vertex] = []
|
||||||
|
|
||||||
|
# assign weights for each edges formed of the directed graph
|
||||||
|
def add_edge(self, vertex_a: str, vertex_b: str, weight: int) -> None:
|
||||||
|
"""
|
||||||
|
Adds a directed edge from vertex `vertex_a`
|
||||||
|
to vertex `vertex_b` with weight `weight`.
|
||||||
|
>>> g = JohnsonGraph()
|
||||||
|
>>> g.add_vertices("A")
|
||||||
|
>>> g.add_vertices("B")
|
||||||
|
>>> g.add_edge("A", "B", 5)
|
||||||
|
>>> g.edges
|
||||||
|
[('A', 'B', 5)]
|
||||||
|
>>> g.graph
|
||||||
|
{'A': [('B', 5)], 'B': []}
|
||||||
|
"""
|
||||||
|
self.edges.append((vertex_a, vertex_b, weight))
|
||||||
|
self.graph[vertex_a].append((vertex_b, weight))
|
||||||
|
|
||||||
|
# perform a dijkstra algorithm on a directed graph
|
||||||
|
def dijkstra(self, start: str) -> dict:
|
||||||
|
"""
|
||||||
|
Computes the shortest path from vertex `start`
|
||||||
|
to all other vertices using Dijkstra's algorithm.
|
||||||
|
>>> g = JohnsonGraph()
|
||||||
|
>>> g.add_vertices("A")
|
||||||
|
>>> g.add_vertices("B")
|
||||||
|
>>> g.add_edge("A", "B", 1)
|
||||||
|
>>> g.dijkstra("A")
|
||||||
|
{'A': 0, 'B': 1}
|
||||||
|
>>> g.add_vertices("C")
|
||||||
|
>>> g.add_edge("B", "C", 2)
|
||||||
|
>>> g.dijkstra("A")
|
||||||
|
{'A': 0, 'B': 1, 'C': 3}
|
||||||
|
"""
|
||||||
|
distances = {vertex: sys.maxsize - 1 for vertex in self.graph}
|
||||||
|
pq = [(0, start)]
|
||||||
|
distances[start] = 0
|
||||||
|
while pq:
|
||||||
|
weight, vertex = heapq.heappop(pq)
|
||||||
|
|
||||||
|
if weight > distances[vertex]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for node, node_weight in self.graph[vertex]:
|
||||||
|
if distances[vertex] + node_weight < distances[node]:
|
||||||
|
distances[node] = distances[vertex] + node_weight
|
||||||
|
heapq.heappush(pq, (distances[node], node))
|
||||||
|
return distances
|
||||||
|
|
||||||
|
# carry out the bellman ford algorithm for a node and estimate its distance vector
|
||||||
|
def bellman_ford(self, start: str) -> dict:
|
||||||
|
"""
|
||||||
|
Computes the shortest path from vertex `start` to
|
||||||
|
all other vertices using the Bellman-Ford algorithm.
|
||||||
|
>>> g = JohnsonGraph()
|
||||||
|
>>> g.add_vertices("A")
|
||||||
|
>>> g.add_vertices("B")
|
||||||
|
>>> g.add_edge("A", "B", 1)
|
||||||
|
>>> g.bellman_ford("A")
|
||||||
|
{'A': 0, 'B': 1}
|
||||||
|
>>> g.add_vertices("C")
|
||||||
|
>>> g.add_edge("B", "C", 2)
|
||||||
|
>>> g.bellman_ford("A")
|
||||||
|
{'A': 0, 'B': 1, 'C': 3}
|
||||||
|
"""
|
||||||
|
distances = {vertex: sys.maxsize - 1 for vertex in self.graph}
|
||||||
|
distances[start] = 0
|
||||||
|
|
||||||
|
for vertex_a in self.graph:
|
||||||
|
for vertex_a, vertex_b, weight in self.edges:
|
||||||
|
if (
|
||||||
|
distances[vertex_a] != sys.maxsize - 1
|
||||||
|
and distances[vertex_a] + weight < distances[vertex_b]
|
||||||
|
):
|
||||||
|
distances[vertex_b] = distances[vertex_a] + weight
|
||||||
|
|
||||||
|
return distances
|
||||||
|
|
||||||
|
# perform the johnson algorithm to handle the negative weights that
|
||||||
|
# could not be handled by either the dijkstra
|
||||||
|
# or the bellman ford algorithm efficiently
|
||||||
|
def johnson_algo(self) -> list[dict]:
|
||||||
|
"""
|
||||||
|
Computes the shortest paths between
|
||||||
|
all pairs of vertices using Johnson's algorithm
|
||||||
|
for a directed graph.
|
||||||
|
>>> g = JohnsonGraph()
|
||||||
|
>>> g.add_vertices("A")
|
||||||
|
>>> g.add_vertices("B")
|
||||||
|
>>> g.add_edge("A", "B", 1)
|
||||||
|
>>> g.add_edge("B", "A", 2)
|
||||||
|
>>> optimal_paths = g.johnson_algo()
|
||||||
|
>>> optimal_paths
|
||||||
|
[{'A': 0, 'B': 1}, {'A': 2, 'B': 0}]
|
||||||
|
"""
|
||||||
|
self.add_vertices("#")
|
||||||
|
for vertex in self.graph:
|
||||||
|
if vertex != "#":
|
||||||
|
self.add_edge("#", vertex, 0)
|
||||||
|
|
||||||
|
hash_path = self.bellman_ford("#")
|
||||||
|
|
||||||
|
for i in range(len(self.edges)):
|
||||||
|
vertex_a, vertex_b, weight = self.edges[i]
|
||||||
|
self.edges[i] = (
|
||||||
|
vertex_a,
|
||||||
|
vertex_b,
|
||||||
|
weight + hash_path[vertex_a] - hash_path[vertex_b],
|
||||||
|
)
|
||||||
|
self.edges[i] = (
|
||||||
|
vertex_a,
|
||||||
|
vertex_b,
|
||||||
|
weight + hash_path[vertex_a] - hash_path[vertex_b],
|
||||||
|
)
|
||||||
|
|
||||||
|
self.graph.pop("#")
|
||||||
|
filtered_edges = []
|
||||||
|
for vertex1, vertex2, node_weight in self.edges:
|
||||||
|
filtered_edges.append((vertex1, vertex2, node_weight))
|
||||||
|
self.edges = filtered_edges
|
||||||
|
|
||||||
|
for vertex in self.graph:
|
||||||
|
self.graph[vertex] = []
|
||||||
|
for vertex1, vertex2, node_weight in self.edges:
|
||||||
|
if vertex1 == vertex:
|
||||||
|
self.graph[vertex].append((vertex2, node_weight))
|
||||||
|
|
||||||
|
distances = []
|
||||||
|
for vertex1 in self.graph:
|
||||||
|
new_dist = self.dijkstra(vertex1)
|
||||||
|
for vertex2 in self.graph:
|
||||||
|
if new_dist[vertex2] < sys.maxsize - 1:
|
||||||
|
new_dist[vertex2] += hash_path[vertex2] - hash_path[vertex1]
|
||||||
|
for key in new_dist:
|
||||||
|
if new_dist[key] == sys.maxsize - 1:
|
||||||
|
new_dist[key] = None
|
||||||
|
distances.append(new_dist)
|
||||||
|
return distances
|
||||||
|
|
||||||
|
|
||||||
|
g = JohnsonGraph()
|
||||||
|
# this a complete connected graph
|
||||||
|
g.add_vertices("A")
|
||||||
|
g.add_vertices("B")
|
||||||
|
g.add_vertices("C")
|
||||||
|
g.add_vertices("D")
|
||||||
|
g.add_vertices("E")
|
||||||
|
|
||||||
|
g.add_edge("A", "B", 1)
|
||||||
|
g.add_edge("A", "C", 3)
|
||||||
|
g.add_edge("B", "D", 4)
|
||||||
|
g.add_edge("D", "E", 2)
|
||||||
|
g.add_edge("E", "C", -2)
|
||||||
|
|
||||||
|
|
||||||
|
optimal_paths = g.johnson_algo()
|
||||||
|
print("Print all optimal paths of a graph using Johnson Algorithm")
|
||||||
|
for i, row in enumerate(optimal_paths):
|
||||||
|
print(f"{i}: {row}")
|
Loading…
Reference in New Issue
Block a user