From c67776da597aef98e27fd1f701e7de987fdd4bb2 Mon Sep 17 00:00:00 2001 From: faizan2700 <46817346+faizan2700@users.noreply.github.com> Date: Sat, 21 Dec 2019 00:57:32 +0530 Subject: [PATCH] other/integeration_by_simpson_approx.py is added for approximate integeration (#1638) * new file *iterating_through_submasks* is added in dynamic_programming section * no changes * *iterating_through_submasks.py is added in dynamic_programming * iterating_through_submasks is added with doctests * iterating_through_submasks.py is added in dynamic_programming * changes made in *iterating_through_submasks.py * changes made in *iterating_through_submasks.py * updated * *other/integeration_by_simpson_approx.py added * *other/integeration_by_simpson_approx.py Added for integeration * Delete iterating_through_submasks.py * Delete DIRECTORY.md * Revert "updated" This reverts commit 73456f85de03782b7d3c794eca8390a4fe87037c. * changes made *integeration_by_simpson_approx.py * update2 Co-authored-by: Christian Clauss --- other/integeration_by_simpson_approx.py | 123 ++++++++++++++++++++++++ 1 file changed, 123 insertions(+) create mode 100644 other/integeration_by_simpson_approx.py diff --git a/other/integeration_by_simpson_approx.py b/other/integeration_by_simpson_approx.py new file mode 100644 index 000000000..2115ac9a5 --- /dev/null +++ b/other/integeration_by_simpson_approx.py @@ -0,0 +1,123 @@ +""" +Author : Syed Faizan ( 3rd Year IIIT Pune ) +Github : faizan2700 + +Purpose : You have one function f(x) which takes float integer and returns +float you have to integrate the function in limits a to b. +The approximation proposed by Thomas Simpsons in 1743 is one way to calculate integration. + +( read article : https://cp-algorithms.com/num_methods/simpson-integration.html ) + +simpson_integration() takes function,lower_limit=a,upper_limit=b,precision and +returns the integration of function in given limit. +""" + +# constants +# the more the number of steps the more accurate +N_STEPS = 1000 + + +def f(x: float) -> float: + return x * x + + +""" +Summary of Simpson Approximation : + +By simpsons integration : +1.integration of fxdx with limit a to b is = f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + 2 * f(x4)..... + f(xn) +where x0 = a +xi = a + i * h +xn = b +""" + + +def simpson_integration(function, a: float, b: float, precision: int = 4) -> float: + + """ + Args: + function : the function which's integration is desired + a : the lower limit of integration + b : upper limit of integraion + precision : precision of the result,error required default is 4 + + Returns: + result : the value of the approximated integration of function in range a to b + + Raises: + AssertionError: function is not callable + AssertionError: a is not float or integer + AssertionError: function should return float or integer + AssertionError: b is not float or integer + AssertionError: precision is not positive integer + + >>> simpson_integration(lambda x : x*x,1,2,3) + 2.333 + + >>> simpson_integration(lambda x : x*x,'wrong_input',2,3) + Traceback (most recent call last): + ... + AssertionError: a should be float or integer your input : wrong_input + + >>> simpson_integration(lambda x : x*x,1,'wrong_input',3) + Traceback (most recent call last): + ... + AssertionError: b should be float or integer your input : wrong_input + + >>> simpson_integration(lambda x : x*x,1,2,'wrong_input') + Traceback (most recent call last): + ... + AssertionError: precision should be positive integer your input : wrong_input + >>> simpson_integration('wrong_input',2,3,4) + Traceback (most recent call last): + ... + AssertionError: the function(object) passed should be callable your input : wrong_input + + >>> simpson_integration(lambda x : x*x,3.45,3.2,1) + -2.8 + + >>> simpson_integration(lambda x : x*x,3.45,3.2,0) + Traceback (most recent call last): + ... + AssertionError: precision should be positive integer your input : 0 + + >>> simpson_integration(lambda x : x*x,3.45,3.2,-1) + Traceback (most recent call last): + ... + AssertionError: precision should be positive integer your input : -1 + + """ + assert callable( + function + ), f"the function(object) passed should be callable your input : {function}" + assert isinstance(a, float) or isinstance( + a, int + ), f"a should be float or integer your input : {a}" + assert isinstance(function(a), float) or isinstance( + function(a), int + ), f"the function should return integer or float return type of your function, {type(a)}" + assert isinstance(b, float) or isinstance( + b, int + ), f"b should be float or integer your input : {b}" + assert ( + isinstance(precision, int) and precision > 0 + ), f"precision should be positive integer your input : {precision}" + + # just applying the formula of simpson for approximate integraion written in + # mentioned article in first comment of this file and above this function + + h = (b - a) / N_STEPS + result = function(a) + function(b) + + for i in range(1, N_STEPS): + a1 = a + h * i + result += function(a1) * (4 if i%2 else 2) + + result *= h / 3 + return round(result, precision) + + +if __name__ == "__main__": + import doctest + + doctest.testmod()