mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
fix outdated fork error (#1117)
This commit is contained in:
parent
3ba67c7d2d
commit
c686cc5863
|
@ -15,7 +15,7 @@ def median_filter(gray_img, mask=3):
|
||||||
# set image borders
|
# set image borders
|
||||||
bd = int(mask / 2)
|
bd = int(mask / 2)
|
||||||
# copy image size
|
# copy image size
|
||||||
median_img = zeros_like(gray)
|
median_img = zeros_like(gray_img)
|
||||||
for i in range(bd, gray_img.shape[0] - bd):
|
for i in range(bd, gray_img.shape[0] - bd):
|
||||||
for j in range(bd, gray_img.shape[1] - bd):
|
for j in range(bd, gray_img.shape[1] - bd):
|
||||||
# get mask according with mask
|
# get mask according with mask
|
||||||
|
|
62
digital_image_processing/test_digital_image_processing.py
Normal file
62
digital_image_processing/test_digital_image_processing.py
Normal file
|
@ -0,0 +1,62 @@
|
||||||
|
"""
|
||||||
|
PyTest's for Digital Image Processing
|
||||||
|
"""
|
||||||
|
|
||||||
|
import digital_image_processing.edge_detection.canny as canny
|
||||||
|
import digital_image_processing.filters.gaussian_filter as gg
|
||||||
|
import digital_image_processing.filters.median_filter as med
|
||||||
|
import digital_image_processing.filters.sobel_filter as sob
|
||||||
|
import digital_image_processing.filters.convolve as conv
|
||||||
|
import digital_image_processing.change_contrast as cc
|
||||||
|
from cv2 import imread, cvtColor, COLOR_BGR2GRAY
|
||||||
|
from numpy import array, uint8
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
img = imread(r"digital_image_processing/image_data/lena.jpg")
|
||||||
|
gray = cvtColor(img, COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
# Test: change_contrast()
|
||||||
|
def test_change_contrast():
|
||||||
|
with Image.open("digital_image_processing/image_data/lena.jpg") as img:
|
||||||
|
# Work around assertion for response
|
||||||
|
assert str(cc.change_contrast(img, 110)).startswith(
|
||||||
|
"<PIL.Image.Image image mode=RGB size=512x512 at"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# canny.gen_gaussian_kernel()
|
||||||
|
def test_gen_gaussian_kernel():
|
||||||
|
resp = canny.gen_gaussian_kernel(9, sigma=1.4)
|
||||||
|
# Assert ambiguous array
|
||||||
|
assert resp.all()
|
||||||
|
|
||||||
|
|
||||||
|
# canny.py
|
||||||
|
def test_canny():
|
||||||
|
canny_img = imread("digital_image_processing/image_data/lena.jpg", 0)
|
||||||
|
# assert ambiguos array for all == True
|
||||||
|
assert canny_img.all()
|
||||||
|
canny_array = canny.canny(canny_img)
|
||||||
|
# assert canny array for at least one True
|
||||||
|
assert canny_array.any()
|
||||||
|
|
||||||
|
|
||||||
|
# filters/gaussian_filter.py
|
||||||
|
def test_gen_gaussian_kernel_filter():
|
||||||
|
assert gg.gaussian_filter(gray, 5, sigma=0.9).all()
|
||||||
|
|
||||||
|
|
||||||
|
def test_convolve_filter():
|
||||||
|
# laplace diagonals
|
||||||
|
Laplace = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]])
|
||||||
|
res = conv.img_convolve(gray, Laplace).astype(uint8)
|
||||||
|
assert res.any()
|
||||||
|
|
||||||
|
|
||||||
|
def test_median_filter():
|
||||||
|
assert med.median_filter(gray, 3).any()
|
||||||
|
|
||||||
|
|
||||||
|
def test_sobel_filter():
|
||||||
|
grad, theta = sob.sobel_filter(gray)
|
||||||
|
assert grad.any() and theta.any()
|
Loading…
Reference in New Issue
Block a user