Add Damerau-Levenshtein distance algorithm (#10159)

* Add Damerau-Levenshtein distance algorithm

* fix: precommit check

* fix: doc correction

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* refactor: use variable for length and doc correction

* Update damerau_levenshtein_distance.py

* Update damerau_levenshtein_distance.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Saahil Mahato 2023-10-13 19:03:52 +05:45 committed by GitHub
parent ebe66935d2
commit c85506262d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -0,0 +1,71 @@
"""
This script is a implementation of the Damerau-Levenshtein distance algorithm.
It's an algorithm that measures the edit distance between two string sequences
More information about this algorithm can be found in this wikipedia article:
https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
"""
def damerau_levenshtein_distance(first_string: str, second_string: str) -> int:
"""
Implements the Damerau-Levenshtein distance algorithm that measures
the edit distance between two strings.
Parameters:
first_string: The first string to compare
second_string: The second string to compare
Returns:
distance: The edit distance between the first and second strings
>>> damerau_levenshtein_distance("cat", "cut")
1
>>> damerau_levenshtein_distance("kitten", "sitting")
3
>>> damerau_levenshtein_distance("hello", "world")
4
>>> damerau_levenshtein_distance("book", "back")
2
>>> damerau_levenshtein_distance("container", "containment")
3
>>> damerau_levenshtein_distance("container", "containment")
3
"""
# Create a dynamic programming matrix to store the distances
dp_matrix = [[0] * (len(second_string) + 1) for _ in range(len(first_string) + 1)]
# Initialize the matrix
for i in range(len(first_string) + 1):
dp_matrix[i][0] = i
for j in range(len(second_string) + 1):
dp_matrix[0][j] = j
# Fill the matrix
for i, first_char in enumerate(first_string, start=1):
for j, second_char in enumerate(second_string, start=1):
cost = int(first_char != second_char)
dp_matrix[i][j] = min(
dp_matrix[i - 1][j] + 1, # Deletion
dp_matrix[i][j - 1] + 1, # Insertion
dp_matrix[i - 1][j - 1] + cost, # Substitution
)
if (
i > 1
and j > 1
and first_string[i - 1] == second_string[j - 2]
and first_string[i - 2] == second_string[j - 1]
):
# Transposition
dp_matrix[i][j] = min(dp_matrix[i][j], dp_matrix[i - 2][j - 2] + cost)
return dp_matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()