diff --git a/project_euler/problem_123/__init__.py b/project_euler/problem_123/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/project_euler/problem_123/sol1.py b/project_euler/problem_123/sol1.py new file mode 100644 index 000000000..85350c8ba --- /dev/null +++ b/project_euler/problem_123/sol1.py @@ -0,0 +1,99 @@ +""" +Problem 123: https://projecteuler.net/problem=123 + +Name: Prime square remainders + +Let pn be the nth prime: 2, 3, 5, 7, 11, ..., and +let r be the remainder when (pn−1)^n + (pn+1)^n is divided by pn^2. + +For example, when n = 3, p3 = 5, and 43 + 63 = 280 ≡ 5 mod 25. +The least value of n for which the remainder first exceeds 10^9 is 7037. + +Find the least value of n for which the remainder first exceeds 10^10. + + +Solution: + +n=1: (p-1) + (p+1) = 2p +n=2: (p-1)^2 + (p+1)^2 + = p^2 + 1 - 2p + p^2 + 1 + 2p (Using (p+b)^2 = (p^2 + b^2 + 2pb), + (p-b)^2 = (p^2 + b^2 - 2pb) and b = 1) + = 2p^2 + 2 +n=3: (p-1)^3 + (p+1)^3 (Similarly using (p+b)^3 & (p-b)^3 formula and so on) + = 2p^3 + 6p +n=4: 2p^4 + 12p^2 + 2 +n=5: 2p^5 + 20p^3 + 10p + +As you could see, when the expression is divided by p^2. +Except for the last term, the rest will result in the remainder 0. + +n=1: 2p +n=2: 2 +n=3: 6p +n=4: 2 +n=5: 10p + +So it could be simplified as, + r = 2pn when n is odd + r = 2 when n is even. +""" + +from typing import Dict, Generator + + +def sieve() -> Generator[int, None, None]: + """ + Returns a prime number generator using sieve method. + >>> type(sieve()) + + >>> primes = sieve() + >>> next(primes) + 2 + >>> next(primes) + 3 + >>> next(primes) + 5 + >>> next(primes) + 7 + >>> next(primes) + 11 + >>> next(primes) + 13 + """ + factor_map: Dict[int, int] = {} + prime = 2 + while True: + factor = factor_map.pop(prime, None) + if factor: + x = factor + prime + while x in factor_map: + x += factor + factor_map[x] = factor + else: + factor_map[prime * prime] = prime + yield prime + prime += 1 + + +def solution(limit: float = 1e10) -> int: + """ + Returns the least value of n for which the remainder first exceeds 10^10. + >>> solution(1e8) + 2371 + >>> solution(1e9) + 7037 + """ + primes = sieve() + + n = 1 + while True: + prime = next(primes) + if (2 * prime * n) > limit: + return n + # Ignore the next prime as the reminder will be 2. + next(primes) + n += 2 + + +if __name__ == "__main__": + print(solution())